Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2025-01-06T01:51:31.384Z Has data issue: false hasContentIssue false

Exact Person Fit Indexes for the Rasch Model for Arbitrary Alternatives

Published online by Cambridge University Press:  02 January 2025

Ivo Poncny*
Affiliation:
University of Vienna
*
Requests for reprints should be sent to Ivo Ponocny, Institut für Psychologie, Universität Wien, Liebiggasse 5, A-1010 Wien, AUSTRIA. E-mail: [email protected].

Abstract

A new algorithm for obtaining exact person fit indexes for the Rasch model is introduced which realizes most powerful tests for a very general family of alternative hypotheses, including tests concerning DIF as well as model-deviating item correlations. The method is also used as a goodness-of-fit test for whole data sets where the item parameters are assumed to be known. For tests with 30 items at most, exact values are obtained, for longer tests a Monte Carlo-algorithm is proposed. Simulated examples and an empirical investigation demonstrate test power and applicability to item elimination.

Type
Original Paper
Copyright
Copyright © 2000 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

The author wishes to thank Elisabeth Ponocny-Seliger and the reviewers for many helpful comments. All exact goodness-of-fit tests proposed in this article are implemented in the menu-driven program T-Rasch 1.0 by Ponocny and Ponocny-Seliger (1999) which can be obtained from ProGAMMA (WWW: http://www.gamma.rug.nl) and also performs nonparametric tests.

References

Andersen, E. B. (1973). A goodness of fit test for the Rasch model. Psychometrika, 38, 123140CrossRefGoogle Scholar
Bedrick, E. J. (1997). Approximating the conditional distribution of person fit indexes for checking the Rasch model. Psychometrika, 62, 191199CrossRefGoogle Scholar
Fischer, G. H. (1995). Derivations of the Rasch model. In Fischer, G. H., & Molenaar, I. W. (Eds.), Rasch models. Foundations, recent developments, and applications (pp. 1538). New York: Springer-VerlagGoogle Scholar
Fischer, G. H. (1995). The linear logistic test model. In Fischer, G. H., & Molenaar, I. W. (Eds.), Rasch models. Foundations, recent developments, and applications (pp. 131155). New York: Springer-VerlagGoogle Scholar
Fischer, G. H. (1995). Some neglected problems in IRT. Psychometrika, 60, 449487CrossRefGoogle Scholar
Folks, J. L. (1984). Combination of independent tests. In Krishnaiah, P. R., Sen, P. K. (Eds.), Handbooks of statistics, Vol. 4 (pp. 113121). North Holland: AmsterdamGoogle Scholar
Glas, C. A. W., & Verhelst, N. D. (1995). Testing the Rasch model. In Fischer, G. H., & Molenaar, I. W. (Eds.), Rasch models. Foundations, recent developments, and applications (pp. 6995). New York: Springer-VerlagGoogle Scholar
Holland, P. W., & Thayer, D. T. (1988). Differential item functioning and the Mantel-Haenszel procedure. In Wainer, H., & Braun, H. I. (Eds.), Test validity. Hillsdale, NJ: Lawrence ErlbaumGoogle Scholar
Klauer, K. C. (1991). An exact and optimal standaridized person test for assessing consistency with the Rasch model. Psychometrika, 56, 213228CrossRefGoogle Scholar
Klauer, K. C. (1995). The assessment of person fit. In Fischer, G. H., & Molenaar, I. W. (Eds.), Rasch models. Foundations, recent developments, and applications (pp. 97110). New York: Springer-VerlagGoogle Scholar
Lehmann, E. L. (1986). Testing statistical hypotheses. New York: WileyCrossRefGoogle Scholar
Li, M. F., & Olejnik, S. (1997). The power of Rasch person-fit statistics in detecting unusual response patterns. Applied Psychological Measurement, 21, 215231CrossRefGoogle Scholar
Liou, M., & Chang, C. H. (1992). Constructing the exact significance level for a person fit statistic. Psychometrika, 57, 169181CrossRefGoogle Scholar
Mehta, C., & Patel, N. (1983). A network algorithm for performing Fisher's exact test inr ×c contingency tables. Journal of the American Statistical Association, 78, 427434Google Scholar
Molenaar, I. W. (1995). Estimation of item parameters. In Fischer, G. H., & Molenaar, I. W. (Eds.), Rasch models. Foundations, recent developments, and applications (pp. 3951). New York: Springer-VerlagGoogle Scholar
Molenaar, I. W., & Hoijtink, H. (1990). The many null distributions of person fit indexes. Psychometrika, 55, 75106CrossRefGoogle Scholar
Neyman, J., & Pearson, E. S. (1933). On the problem of the most efficient tests of statistical hypotheses. Philosophical Transactions of the Royal Society, Series A, 231, 289337Google Scholar
Ponocny, I. (1996). Kombinatorische Modelltests für das Rasch-Modell [Combinatorial goodness-of-fit tests for the Rasch model]. Unpublished doctoral dissertation, University of Vienna.Google Scholar
Ponocny, I., & Ponocny-Seliger, E. (1999). T-Rasch 1.0. Groningen: ProGAMMAGoogle Scholar
Rao, C. R. (1973). Linear statistical inference and its applications 2nd ed., New York: WileyCrossRefGoogle Scholar
Rasch, G. (1960). Probabilistic models for some intelligence and attainment tests. Kopenhagen: Danish Institute for Educational ResearchGoogle Scholar
Stephens, M. A. (1986). Tests for the uniform distribution. In D'Agostino, R. B., & Stephens, M. A. (Eds.), Goodness-of-fit techniques (pp. 331366). New York: DekkerGoogle Scholar