Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-07T19:11:46.676Z Has data issue: false hasContentIssue false

Estimating Latent Distributions in Recurrent Choice Data

Published online by Cambridge University Press:  01 January 2025

Ulf Böckenholt*
Affiliation:
University of Illinois at Urbana-Champaign
*
Requests for reprints should be sent to Ulf Böckenholt, Department of Psychology, University of Illinois at Urbana-Champaign, Champaign, IL 61820.

Abstract

This paper introduces a flexible class of stochastic mixture models for the analysis and interpretation of individual differences in recurrent choice and other types of count data. These choice models are derived by specifying elements of the choice process at the individual level. Probability distributions are introduced to describe variations in the choice process among individuals and to obtain a representation of the aggregate choice behavior. Due to the explicit consideration of random effect sources, the choice models are parsimonious and readily interpretable. An easy to implement EM algorithm is presented for parameter estimation. Two applications illustrate the proposed approach.

Type
Original Paper
Copyright
Copyright © 1993 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

The author thanks Greg Allenby for helpful discussion and a marketing data set from the A. C. Nielsen Corporation, and four anonymous reviewers and the Editor for their comments on a previous version of the article.

References

Abul-Libdeh, H., Turnbull, B. W., & Clark, L. C. (1990). Analysis of multi-type recurrent events in longitudinal studies; application to a skin cancer prevention trial. Biometrics, 46, 10171034.CrossRefGoogle Scholar
Al-Hussaini, E. K., and Ahmad, K. E. (1981). On the identifiability of finite mixtures of distributions. IEEE Transactions on Information Theory, 27, 664668.CrossRefGoogle Scholar
Anscombe, F. J. (1950). Sampling theory of negative binomial and logarithmic distributions. Biometrika, 37, 358382.CrossRefGoogle Scholar
Arbous, A. G., & Kerrich, J. E. (1951). Accident statistics and the concept of accident proneness. Biometrics, 7, 340432.CrossRefGoogle Scholar
Bates, G. E., & Neyman, J. (1952). Contributions to the theory of accident proneness, Parts I and II, Berkeley: University of California Press.Google Scholar
Bozdogan, H. (1987). Model selection and Akaike's Information Criterion (AIC): the general theory and its analytical extensions. Psychometrika, 52, 345370.CrossRefGoogle Scholar
Chatfield, C., & Goodhardt, G. J. (1975). A consumer purchasing model with Erlang interpurchase times. Journal of the American Statistical Association, 68, 828835.Google Scholar
Chernoff, H., & Lehmann, E. L. (1954). The use of maximum likelihood estimates in X 2-tests for goodness of fit. The Annals of Mathematical Statistics, 25, 579586.CrossRefGoogle Scholar
Devroye, L. (1986). Non-uniform random variate generation, New York: Springer-Verlag.CrossRefGoogle Scholar
Dillon, W. R., Madden, T. J., & Mullani, N. (1983). Scaling models for categorical variables: An application of latent structure models. The Journal of Consumer Research, 10, 209224.CrossRefGoogle Scholar
Dishon, M., & Weiss, G. H. (1980). Small sample comparison of estimation methods for the beta distribution. Journal of Statistical Computation and Simulation, 11, 111.CrossRefGoogle Scholar
Ehrenberg, A. S. C. (1988). Repeat-buying, New York: Oxford University Press.Google Scholar
Goodhardt, G. J., Ehrenberg, A. S. C., & Chatfield, C. (1984). The Dirichlet: A comprehensive model of buying behavior. Journal of the Royal Statistical Society, Series A, 147, 621655.CrossRefGoogle Scholar
Goodman, L. A. (1974). Exploratory latent structure models using both identifiable and unidentifiable models. Biometrika, 61, 215231.CrossRefGoogle Scholar
Hausman, J., Hall, B. H., & Griliches, Z. (1984). Econometric models for count data with an application to the patents-R&D relationship. Econometrica, 52, 909938.CrossRefGoogle Scholar
Johnson, N. L., & Kotz, S. (1969). Distribution in statistics: Discrete distributions, New York: Wiley.Google Scholar
Lawless, J. F. (1987). Negative binomial and mixed Poisson regression. The Canadian Journal of Statistics, 15, 209225.CrossRefGoogle Scholar
Lazarsfeld, P. F. (1950). The logical and mathematical foundation of latent structure analysis. In Stouffer, S. A. et al. (Eds.), Studies in social psychology in World War II, Vol. IV (pp. 362412). Princeton: Princeton University Press.Google Scholar
Lindsay, B., Clogg, C. C., & Grego, J. (1991). Semiparametric estimation in the Rasch model and related exponential response models, including a simple latent class model for item analysis. Journal of the American Statistical Association, 86, 96107.CrossRefGoogle Scholar
Luce, R. D. (1959). Individual choice behavior, New York: Wiley.Google Scholar
Maritz, J. S., & Lwin, T. (1989). Empirical Bayes methods, London: Chapman and Hall.Google Scholar
Mislevy, R. J. (1984). Estimating latent distributions. Psychometrika, 49, 359381.CrossRefGoogle Scholar
Moran, P. A. P. (1971). Maximum likelihood estimation in non-standard conditions. Proceedings of the Cambridge Philosophy Society, 70, 441450.CrossRefGoogle Scholar
Morrison, D. G., & Schmittlein, D. C. (1988). Generalizing the NBD model for customer purchases: What are the implications and is it worth the effort?. Journal of Business and Economic Statistics, 6, 145159.CrossRefGoogle Scholar
Nelson, J. F. (1985). Multivariate gamma-Poisson models. Journal of the American Statistical Association, 80, 828834.CrossRefGoogle Scholar
Poulsen, C. S. (1983). Latent structure analysis with choice modeling applications. Unpublished dissertation. University of Pennsylvania.Google Scholar
Pudney, S. (1989). Modeling individual choice: The econometrics of corners, kinks and holes, New York: Basil Blackwell.Google Scholar
Redner, R. A., & Walker, H. F. (1984). Mixture densities, maximum likelihood and the EM algorithm. SIAM Review, 26, 195240.CrossRefGoogle Scholar
Shoemaker, R. W., Staelin, R., Kadane, J. B., & Shoaf, F. R. (1977). Relation of brand choice to purchase frequency. Journal of Marketing Research, 14, 458468.CrossRefGoogle Scholar
Teicher, H. (1961). Identifiability of mixtures. Annals of Mathematical Statistics, 32, 244248.CrossRefGoogle Scholar
Teicher, H. (1967). Identifiability of mixtures of product measures. Annals of Mathematical Statistics, 38, 13001302.CrossRefGoogle Scholar
Thall, P. F. (1988). Mixed Poisson likelihood regression models for longitudinal interval count data. Biometrics, 44, 197210.CrossRefGoogle ScholarPubMed
Titterington, D. M., Smith, A. F. M., Makov, U. E. (1985). Statistical analysis of finite mixture distributions, New York: Wiley.Google Scholar
Wagner, U., & Taudes, A. (1986). A multivariate Polya model of brand choice and purchase incidence. Marketing Science, 5, 219244.CrossRefGoogle Scholar
Wasserman, S. (1983). Distinguishing between stochastic models of heterogeneity and contagion. Journal of Mathematical Psychology, 27, 201215.CrossRefGoogle Scholar
Yakowiz, S. J., & Spraggins, J. D. (1968). On the identifiability of finite mixtures. Annals of Mathematical Statistics, 39, 209214.CrossRefGoogle Scholar