Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-07T19:38:30.344Z Has data issue: false hasContentIssue false

A Dynamic Generalization of the Rasch Model

Published online by Cambridge University Press:  01 January 2025

N. D. Verhelst*
Affiliation:
National Institute of Educational Measurement (CITO), Arnhem, The Netherlands
C. A. W. Glas
Affiliation:
National Institute of Educational Measurement (CITO), Arnhem, The Netherlands
*
Requests for reprints should be sent to N. D. Verhelst, Cito PO Box 1034, 6801 MG Arnhem, THE NETHERLANDS.

Abstract

In the present paper a model for describing dynamic processes is constructed by combining the common Rasch model with the concept of structurally incomplete designs. This is accomplished by mapping each item on a collection of virtual items, one of which is assumed to be presented to the respondent dependent on the preceding responses and/or the feedback obtained. It is shown that, in the case of subject control, no unique conditional maximum likelihood (CML) estimates exist, whereas marginal maximum likelihood (MML) proves a suitable estimation procedure. A hierarchical family of dynamic models is presented, and it is shown how to test special cases against more general ones. Furthermore, it is shown that the model presented is a generalization of a class of mathematical learning models, known as Luce's beta-model.

Type
Original Paper
Copyright
Copyright © 1993 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andersen, E. B. (1973). Conditional inference and models for measuring, Copenhagen: Mentalhygienisk Forskningsinstitut.Google Scholar
Bock, R. D., & Aitkin, M. (1981). Marginal maximum likelihood estimation of item parameters: an application of an EM-algorithm. Psychometrika, 46, 443459.CrossRefGoogle Scholar
Bush, R. R., & Mosteller, F. (1951). A mathematical model for simple learning. Psychological Review, 58, 313323.CrossRefGoogle ScholarPubMed
de Leeuw, J., & Verhelst, N. D. (1986). Maximum likelihood estimation in generalized Rasch models. Journal of Educational Statistics, 11, 183196.CrossRefGoogle Scholar
Estes, W. K. (1972). Research and theory on the learning of probabilities. Journal of the American Statistical Association, 67, 81102.CrossRefGoogle Scholar
Ferguson, G. A. (1942). Item selection by the constant process. Psychometrika, 7, 1929.CrossRefGoogle Scholar
Fischer, G. H. (1972). A step towards dynamic test theory, Vienna: University of Vienna, Institute of Psychology.Google Scholar
Fischer, G. H. (1974). Einführung in die Theorie Psychologischer Tests, Bern: Huber.Google Scholar
Fischer, G. H. (1981). On the existence and uniqueness of maximum likelihood estimates in the Rasch model. Psychometrika, 46, 5977.CrossRefGoogle Scholar
Fischer, G. H. (1983). Logistic latent trait models with linear constraints. Psychometrika, 48, 326.CrossRefGoogle Scholar
Follmann, D. (1988). Consistent estimation in the Rasch model based on nonparametric margins. Psychometrika, 53, 553562.CrossRefGoogle Scholar
Glas, C. A. W. (1988). The Rasch model and multi-stage testing. Journal of Educational Statistics, 13, 4552.CrossRefGoogle Scholar
Glas, C. A. W. (1989). Contributions to estimating and testing Rasch models, Arnhem: Cito.Google Scholar
Glas, C. A. W., & Verhelst, N. D. (1989). Extensions of the partial credit model. Psychometrika, 54, 635659.CrossRefGoogle Scholar
Jannarone, R. J. (1986). Conjunctive item response theory kernels. Psychometrika, 51, 357373.CrossRefGoogle Scholar
Kelderman, H. (1984). Loglinear Rasch model tests. Psychometrika, 49, 223245.CrossRefGoogle Scholar
Kempf, W. (1974). Dynamische Modelle zur Messung sozialer Verhaltenspositionen. In Kempf, W. (Eds.), Probabilistische Modelle in de Sozialpsychologie (pp. 1355). Bern: Huber.Google Scholar
Kempf, W. (1977). A dynamic test model and its use in the micro-evaluation of instrumental material. In Spada, H., & Kempf, W. (Eds.), Structural models for thinking and learning (pp. 295318). Bern: Huber.Google Scholar
Kempf, W. (1977). Dynamic models for the measurement of ‘traits’ in social behavior. In Kempf, W., & Repp, B. H. (Eds.), Mathematical models for social psychology (pp. 1458). New York: Wiley.Google Scholar
Kiefer, J., & Wolfowitz, J. (1956). Consistency of the maximum likelihood estimator in the presence of infinitely many incidental parameters. Annals of Mathematical Statistics, 27, 887903.CrossRefGoogle Scholar
Laird, N. (1978). Nonparametric maximum likelihood estimation of a mixing distribution. Journal of the American Statistical Association, 73, 805811.CrossRefGoogle Scholar
Lawley, D. N. (1943). On problems connected with item selection and test construction. Proceedings of the Royal Society of Edinburgh, 61, 273287.Google Scholar
Lord, F. M. (1952). A theory of test scores. Psychometric Monograph No. 7, 17(4, Pt. 2).Google Scholar
Louis, T. A. (1982). Finding the observed information matrix when using the EM algorithm. Journal of the Royal Statistical Society, Series B, 44, 226233.CrossRefGoogle Scholar
Luce, R. D. (1959). Individual choice behavior, New York: Wiley.Google Scholar
Luce, R. D., Bush, R. R., & Galanter, E. (1963). Handbook of mathematical psychology (3 volumes), New York: Wiley.Google Scholar
Mislevy, R. J. (1984). Estimating latent distributions. Psychometrika, 49, 359381.CrossRefGoogle Scholar
Neyman, J., & Scott, E. L. (1948). Consistent estimates, based on partially consistent observations. Econometrica, 16, 132.CrossRefGoogle Scholar
Rasch, G. (1960). Probabilistic models for some intelligence and attainment tests, Copenhagen: Danish Institute for Educational Research.Google Scholar
Sternberg, S. H. (1959). A path dependent linear model. In Bush, R. R. & Estes, W. K. (Eds.), Studies in mathematical learning theory (pp. 308339). Stanford: Stanford University Press.Google Scholar
Sternberg, S. H. (1963). Stochastic learning theory. In Luce, R. D., Bush, R. R., & Galanter, E. (Eds.), Handbook of mathematical psychology, Vol. II (pp. 1120). New York: Wiley.Google Scholar
Thissen, D. (1982). Marginal maximum likelihood estimation in the one-parameter logistic model. Psychometrika, 47, 175186.CrossRefGoogle Scholar
Verhelst, N. D., & Eggen, T. J. H. M. (1989). Psychometrische en statistische aspecten van peilingsonderzoek [Psychometric and statistical aspects of assessment research], Arnhem: Cito.Google Scholar