Hostname: page-component-5f745c7db-xx4dx Total loading time: 0 Render date: 2025-01-06T07:04:09.809Z Has data issue: true hasContentIssue false

Deriving Ultrametric Tree Structures from Proximity Data Confounded by Differential Stimulus Familiarity

Published online by Cambridge University Press:  01 January 2025

Wayne S. DeSarbo*
Affiliation:
School of Business Administration, The University of Michigan
Rabikar Chatterjee
Affiliation:
School of Business Administration, The University of Michigan
Juyoung Kim
Affiliation:
School of Business Administration, The University of Michigan
*
Requests for reprints should be directed to Wayne S. DeSarbo, School of Business Administration, The University of Michigan, Ann Arbor, MI 48109-1234.

Abstract

This paper presents a new procedure called TREEFAM for estimating ultrametric tree structures from proximity data confounded by differential stimulus familiarity. The objective of the proposed TREEFAM procedure is to quantitatively “filter out” the effects of stimulus unfamiliarity in the estimation of an ultrametric tree. A conditional, alternating maximum likelihood procedure is formulated to simultaneously estimate an ultrametric tree, under the unobserved condition of complete stimulus familiarity, and subject-specific parameters capturing the adjustments due to differential unfamiliarity. We demonstrate the performance of the TREEFAM procedure under a variety of alternative conditions via a modest Monte Carlo experimental study. An empirical application provides evidence that the TREEFAM outperforms traditional models that ignore the effects of unfamiliarity in terms of superior tree recovery and overall goodness-of-fit.

Type
Original Paper
Copyright
Copyright © 1994 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle. In Petrov, N., Csadki, F. (Eds.), Second International Symposium on Information Theory (pp. 267281). Budapest: Akademiai Kiado.Google Scholar
Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, AC-19, 716723.CrossRefGoogle Scholar
Alba, J. W., Hutchinson, J. W. (1987). Dimensions of consumer expertise. Journal of Consumer Research, 13, 411454.CrossRefGoogle Scholar
Boster, J. S. (1988). Natural sources of internal category structure: Typicality, familiarity, and similarity of birds. Memory and Cognition, 16, 258270.CrossRefGoogle ScholarPubMed
Bozdogan, H. (1987). Model selection and Akaike's information criterion (AIC): The general theory and its analytical extensions. Psychometrika, 52, 345370.CrossRefGoogle Scholar
Carroll, J. D., & Pruzanski, S. (1975, August). Fitting of hierarchical tree structure (HTS) models, mixtures of HTS models, and hybrid models via mathematical programming and alternating least squares. Paper presented at U.S.-Japan Seminar on Multidimensional Scaling, University of California at San Diego, La Jolla, California.Google Scholar
Carroll, J. D., Pruzanski, S. (1980). Discrete and hybrid scaling models. In Lantermann, E. D., Feger, H. (Eds.), Similarity and choice (pp. 4869). Bern: Hans Huber.Google Scholar
Chandon, J. L., Lemaire, L., Pouget, J. (1980). Construction de l'ultramétrique la plus proche d'une dissimilarité au sens des moidres carrés [Construction of least-squares ultrametric trees from dissimilarity data]. R. A. I. R. O., Recherche Operationelle, 14, 157170.Google Scholar
Chatterjee, R., DeSarbo, W. S. (1992). Accommodating the effects of brand unfamiliarity in the multidimensional scaling of preference data. Marketing Letters, 3, 8599.CrossRefGoogle Scholar
DeSarbo, W. S., Manrai, A. K., Burke, R. R. (1990). A nonspatial methodology for the analysis of two-way proximity data incorporating the distance-density hypothesis. Psychometrika, 55, 229253.CrossRefGoogle Scholar
De Soete, G. (1984). A least squares algorithm for fitting an ultrametric tree to a dissimilarity matrix. Pattern Recognition Letters, 2, 33137.CrossRefGoogle Scholar
Goldstein, A. G., Chance, J. E. (1980). Memory for faces and schema theory. Journal of Psychology, 105, 4759.CrossRefGoogle Scholar
Green, P. E., Tull, D. S., Albaum, G. (1988). Research for marketing decisions, Englewood Cliffs, NJ: Prentice-Hall.Google Scholar
Hartigan, J. A. (1967). Representation of similarity matrices by trees. Journal of the American Statistical Association, 62, 11401158.CrossRefGoogle Scholar
Hartigan, J. A. (1975). Clustering algorithms, New York: Wiley.Google Scholar
Jaccard, J., Wood, G. (1988). The effects of incomplete information on the formation of attitudes toward behavioral alternatives. Journal of Personality and Social Psychology, 54, 580591.CrossRefGoogle Scholar
Jain, A. K., Dubes, R. C. (1988). Algorithms for clustering data, Englewood Cliffs, NJ: Prentice-Hall.Google Scholar
Jardine, C. J., Jardine, N., Sibson, R. (1967). The structure and construction of taxonomic hierarchies. Mathematical Bioscience, 1, 173179.CrossRefGoogle Scholar
Johnson, S. C. (1967). Hierarchical clustering schemes. Psychometrika, 32, 241254.CrossRefGoogle ScholarPubMed
Koehler, A. B., Murphree, E. S. (1988). A comparison of the Akaike and Schwarz criteria for selecting model order. Applied Statistics, 37, 187195.CrossRefGoogle Scholar
Meyer, R. J. (1981). A model of multiattribute judgments under attribute uncertainty and informational constraint. Journal of Marketing Research, 18, 428441.CrossRefGoogle Scholar
Morrison, D. F. (1983). Applied linear statistical methods, Englewood Cliffs, NJ: Prentice-Hall.Google Scholar
Pereboom, A. C. (1971). Some fundamental problems in experimental psychology: An overview. Psychological Reports, 28, 439455.CrossRefGoogle Scholar
Ramsay, J. O. (1977). Maximum likelihood estimation in multidimensional scaling. Psychometrika, 42, 241266.CrossRefGoogle Scholar
Sanbonmatsu, D. M., Kardes, F. R., Herr, P. M. (1992). The role of prior knowledge and missing information in multiattribute evaluation. Organizational Behavior and Human Decision Processes, 51, 7691.CrossRefGoogle Scholar
Schwarz, G. (1978). Estimating the dimension of a model. Annals of Statistics, 6, 461464.CrossRefGoogle Scholar
Slovic, P., MacPhillamy, D. (1974). Dimensional commensurability and cue utilization in comparative judgment. Organizational Behavior and Human Performance, 11, 172194.CrossRefGoogle Scholar
Tversky, A. (1977). Features of similarity. Psychological Review, 84, 327352.CrossRefGoogle Scholar
Valentine, T., Bruce, V. (1986). Recognizing familiar faces: The role of distinctiveness and familiarity. Canadian Journal of Psychology, 40, 300305.CrossRefGoogle ScholarPubMed
Yagamichi, T., Hill, C. T. (1983). Initial impressions versus missing information as explanations of set-size effect. Journal of Personality and Social Psychology, 44, 942951.Google Scholar
Yates, J. F., Jagacinski, C. M., Faber, M. D. (1978). Evaluation of partially described multi-attribute options. Organizational Behavior and Human Performance, 21, 240251.CrossRefGoogle Scholar