Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-08T12:00:32.307Z Has data issue: false hasContentIssue false

Correspondence Analysis of Incomplete Contingency Tables

Published online by Cambridge University Press:  01 January 2025

Jan de Leeuw
Affiliation:
Department of Data Theory, University of Leiden
Peter G. M. van der Heijden*
Affiliation:
Department of Psychometrics, University of Leiden
*
Requests for reprints should be sent to Peter G. M. van der Heijden, Department of Psychometrics, Subfaculty of Psychology, Faculty of Social Sciences, University of Leiden, Hooigracht 15, 2312 KM Leiden, THE NETHERLANDS.

Abstract

Correspondence analysis can be described as a technique which decomposes the departure from independence in a two-way contingency table. In this paper a form of correspondence analysis is proposed which decomposes the departure from the quasi-independence model. This form seems to be a good alternative to ordinary correspondence analysis in cases where the use of the latter is either impossible or not recommended, for example, in case of missing data or structural zeros. It is shown that Nora's reconstitution of order zero, a procedure well-known in the French literature, is formally identical to our correspondence analysis of incomplete tables. Therefore, reconstitution of order zero can also be interpreted as providing a decomposition of the residuals from the quasi-independence model. Furthermore, correspondence analysis of incomplete tables can be performed using existing programs for ordinary correspondence analysis.

Type
Original Paper
Copyright
Copyright © 1988 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baccini, A. (1984) Etude comparative des représentations graphiques en analyses factorielle des correspondances simples et multiples [A comparative study of graphical representations in simple and multiple correspondance analysis]. Toulouse: Laboratoire de Statistique et Probabilités. Université Paul Sabatier.Google Scholar
Benzécri, J. P.et al. (1973). L'analyse des données [Data analysis], Paris: Dunod.Google Scholar
Benzécri, J. P.et al. (1980). Pratique de l'analyse des données [Practice of data analysis], Paris: Dunod.Google Scholar
Bishop, Y. M. M., Fienberg, S. E. (1969). Incomplete two-dimensional contingency tables. Biometrics, 25, 119128.CrossRefGoogle ScholarPubMed
Bishop, Y. M. M., Fienberg, S. E., Holland, P. W. (1975). Discrete multivariate analysis: Theory and practice, Cambridge: MIT-press.Google Scholar
Burtchy, B. (1984). Analyse factorielle des matrices d'échanges [Factor analysis of exchange matrices]. In Diday, E., Jambu, M., Lebart, L., Pagès, J., Tomassone, R. (Eds.), Data analysis and informatics, III, Amsterdam: North-Holland.Google Scholar
Caussinus, H. (1965). Contribution à l'analyse de la corrélation de deux caractères qualitatifs [Contribution to correlation analysis of two qualitative variables]. Annales de la Faculté des Sciences de l'Université de Toulouse, 29, 77182.Google Scholar
Caussinus, H., de Falguerolles, A. (1986). Modèle de quasi-symétrie et analyse descriptive de tableaux carrés [The quasi-symmetrie model and the descriptive analysis of square tables], Toulouse: Université Paul Sabatier.Google Scholar
Daudin, J. J., Trécourt, P. (1980). Analyse factorielle des correspondances et modéle log-lineaire: comparaison des deux méthodes sur un exemple [Correspondence analysis and the loglinear model: A comparison of the two methods using an example]. Revue de Statistique Appliquée, 1, 524.Google Scholar
Deville, J.-C., Malinvaud, E. (1983). Data analysis in official socio-economic statistics. Journal of the Royal Statistical Society, Series A, 146, 335361.CrossRefGoogle Scholar
Escofier, B. (1984). Analyse factorielle en reference á un modèle; application à l'analyse de tableaux d'échanges [Factorial analysis related to a model: Application to the analysis of exchange tables]. Revue de Statistique Appliquée, 32(4), 2536.Google Scholar
Foucart, T. (1985).Tableux symmeétriques et tableaux d'échanges [Symmetric tables and exchange tables]. Revue de Statistique Appliquée, 33(2), 3754.Google Scholar
Gabriel, K. R. (1971). The biplot-graphic display of matrices with application to principal component analysis. Biometrika, 58, 453467.CrossRefGoogle Scholar
Goodman, L. A. (1968). The analysis of cross-classified data: Independence, quasi-independence, and interactions in contingency tables with or without missing entries. Journal of American Statistical Association, 63, 10911131.Google Scholar
Goodman, L. A. (1985). The 1983 Henry L. Rietz memorial lecture. The analysis of cross-classified data having ordered and/or unordered categories: Association models, correlation models, and asymmetry models for contingency tables with or without missing entries. The Annals of Statistics, 13, 1069.CrossRefGoogle Scholar
Goodman, L. A. (1986). Some useful extensions of the usual correspondence analysis approach and the usual log-linear models approach in the analysis of contingency tables. International Statistical Review, 54, 243309.CrossRefGoogle Scholar
Greenacre, M. J. (1984). Theory and applications of correspondence analysis, London: Academic Press.Google Scholar
Haberman, S. J. (1973). The analysis of residuals in cross-classified tables. Biometrics, 29, 205220.CrossRefGoogle Scholar
Israëls, A. Z., Sikkel, D. (1982). Correspondence analysis and comparisons with other techniques, Voorburg: Centraal Bureau voor Statistiek.Google Scholar
Kendall, D. G., Stuart, A. (1967). The advanced theory of statistics 2nd. ed.,, London: Griffin.Google Scholar
Lauro, N. C., Decarli, A. (1982). Correspondence analysis and log-linear models in multiway contingency tables study. Some remarks on experimental data. Metron (Rivista internazionale di statistica), 15 1,2213234.Google Scholar
Mosteller, F. (1968). Association and estimation in contingency tables. Journal of American Statistical Association, 63, 128.CrossRefGoogle Scholar
Nora, C. (1975). Une méthode de reconstitution et d'analyse de données incomplétes [A method for reconstitution and for the analysis of incomplete data]. Unpublished Thèse d'Etat, Université P. et M. Curie, Paris VI'.Google Scholar
Tenenhaus, M., Young, F. W. (1985). An analysis and synthesis of multiple correspondence analysis, optimal scaling, dual scaling, homogeneity analysis and other methods for quantifying categorical multivariate data. Psychometrika, 50, 91119.CrossRefGoogle Scholar
van der Heijden, P. G. M. (1987). Correspondence analysis of longitudinal categorical data, Leiden: D.S.W.O.-Press.Google Scholar
van der Heijden, P. G. M., de Leeuw, J. (1985). Correspondence analysis used complementary to loglinear analysis. Psychometrika, 50, 429447.CrossRefGoogle Scholar
van der Heijden, P. G. M., Worsley, K. J. (1988). Comment on “Correspondence analysis used complementary to loglinear analysis”. Psychometrika, 53, 287291.CrossRefGoogle Scholar