Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-08T11:25:52.380Z Has data issue: false hasContentIssue false

Continuous Time State Space Modeling of Panel Data by Means of Sem

Published online by Cambridge University Press:  01 January 2025

Johan H. L. Oud*
Affiliation:
University of Nijmegen, The Netherlands
Robert A. R. G. Jansen
Affiliation:
University of Nijmegen, The Netherlands
*
Requests for reprints, for the Mx input files, and for other software used in the analysis of the example should be sent to Johan H.L. Oud, University of Nijmegen, Institute of Special education, PO Box 9104, 6500 HE Nijmegen, THE NETHERLANDS. E-Mail: J. [email protected]

Abstract

Maximum likelihood parameter estimation of the continuous time linear stochastic state space model is considered on the basis of large N discrete time data using a structural equation modeling (SEM) program. Random subject effects are allowed to be part of the model. The exact discrete model (EDM) is employed which links the discrete time model parameters to the underlying continuous time model parameters by means of nonlinear restrictions. The EDM is generalized to cover not only time-invariant parameters but also the cases of stepwise time-varying (piecewise time-invariant) parameters and parameters varying continuously over time according to a general polynomial scheme. The identification of the continuous time parameters is discussed and an educational example is presented.

Type
Original Paper
Copyright
Copyright © 2000 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Research supported by the University of Nijmegen, Ph.D. project: “Constructing monitoring systems in the behavioral sciences: The SEM state space approach,” under supervision of E.E.J. De Bruyn, J.H.L. Oud and J.F.J. van Leeuwe. The authors thank Martijn P.F. Berger of the University of Maastricht, The Netherlands, for his help in the preparation of the manuscript.

References

Arminger, G. (1986). Linear stochastic differential equations for panel data with unobserved variables. In Tuma, N.B. (Eds.), Sociological Methodology (pp. 187212). Washington: Jossey-Bass.Google Scholar
Arminger, G., Wittenberg, J., Schepers, A. (1996). MECOSA 3: Mean and covariance structure analysis. Friedrichsdorf, Germany: Additive.Google Scholar
Arnold, L. (1974). Stochastic differential equations. New York: Wiley.Google Scholar
Baltagi, B.H. (1995). Econometric analysis of panel data. Chichester: Wiley.Google Scholar
Bergstrom, A.R. (1984). Continuous time stochastic models and issues of aggregation over time. In Griliches, Z., Intriligator, M.D. (Eds.), Handbook of econometrics (pp. 11451212). Amsterdam: North-Holland.CrossRefGoogle Scholar
Bergstrom, A.R. (1988). The history of continuous-time econometric models. Econometric Theory, 4, 365383.CrossRefGoogle Scholar
Coleman, J.S. (1968). The mathematical study of change. In Blalock, H.M., Blalock, A. (Eds.), Methodology in social research (pp. 428478). New York: McGraw-Hill.Google Scholar
Hamerle, A., Nagl, W., Singer, H. (1991). Problems with the estimation of stochastic differential equations using structural equations models. Journal of Mathematical Sociology, 16, 201220.CrossRefGoogle Scholar
Hamerle, A., Singer, H., Nagl, W. (1993). Identification and estimation of continuous time dynamic systems with exogenous variables using panel data. Econometric Theory, 9, 283295.CrossRefGoogle Scholar
Hamilton, J.D. (1986). A standard error for the estimated state vector of a state-space model. Journal of Econometrics, 33, 387397.CrossRefGoogle Scholar
Hansen, L., Sargent, T.J. (1983). The dimensionality of the aliasing problem. Econometrica, 51, 377388.CrossRefGoogle Scholar
Haughton, D.M.A., Oud, J.H.L., Jansen, R.A.R.G. (1997). Information and other criteria in structural equation model selection. Communications in Statistics: Simulation and Computation, 26, 14771516.CrossRefGoogle Scholar
Jansen, R.A.R.G., Oud, J.H.L. (1995). Longitudinal LISREL model estimation from incomplete panel data using the EM algorithm and the Kalman smoother. Statistica Neerlandica, 49, 362377.CrossRefGoogle Scholar
Jazwinski, A.H. (1970). Stochastic processes and filtering theory. New York: Academic Press.Google Scholar
Jones, R.H. (1984). Fitting multivariate models to unequally spaced data. In Parzen, E. (Eds.), Time series analysis of irregularly observed data. Londen: Chapman and Hall.Google Scholar
Jones, R.H. (1993). Longitudinal data with serial correlation: A state space approach. Londen: Chapman and Hall.CrossRefGoogle Scholar
Jöreskog, K.G. (1974). Analyzing psychological data by structural analysis of covariance matrices. In Krantz, D.H., Atkinson, R.C., Luce, R.D., Suppes, P. (Eds.), Contemporary developments in mathematical psychology: Vol. II (pp. 156). San Francisco: Freeman.Google Scholar
Jöreskog, K.G., Sörbom, D. (1985). Simultaneous analysis of longitudinal data from several cohorts. In Mason, W.M., Fienberg, S.E. (Eds.), Cohort analysis in social research: Beyond the identification problem (pp. 323341). New York: Springer.CrossRefGoogle Scholar
Jöreskog, K.G., Sörbom, D. (1989). LISREL 7: User's reference guide. Mooresville IN: Scientific Software.Google Scholar
Jöreskog, K.G., Sörbom, D. (1993). New features in LISREL. Chicago: Scientific Software International.Google Scholar
Mommers, M.J.C., Oud, J.H.L. (1992). Monitoring reading and spelling achievement. In Verhoeven, L., de Jong, J.H.A.L. (Eds.), The construct of language proficiency (pp. 4960). Amsterdam: John Benjamins.CrossRefGoogle Scholar
Neale, M.C. (1997). Mx: Statistical Modeling 4th ed., Richmond, VA: Department of Psychiatry.Google Scholar
Oud, J.H.L. (1978). Systeem-methodologie in sociaal-wetenschappelijk onderzoek. Nijmegen, The Netherlands: Alfa [Systems methodology in social science research]Google Scholar
Oud, J.H.L., Jansen, R.A.R.G. (1996). Nonstationary longitudinal LISREL model estimation from incomplete panel data using EM and the Kalman smoother. In Engel, U., Reinecke, J. (Eds.), Analysis of change: Advanced techniques in panel data analysis (pp. 135159). New York: de Gruyter.CrossRefGoogle Scholar
Oud, J.H.L., van den Bercken, J.H.L., Essers, R.J. (1990). Longitudinal factor score estimation using the Kalman filter. Applied Psychological Measurement, 14, 395418.CrossRefGoogle Scholar
Oud, J.H.L., van Leeuwe, J.F.J., Jansen, R.A.R.G. (1993). Kalman filtering in discrete and continuous time based on longitudinal LISREL models. In Oud, J. H. L., van Blokland-Vogelesang, A. W. (Eds.), Advances in longitudinal and multivariate analysis in the behavioral sciences (pp. 326). Nijmegen: ITS.Google Scholar
Phillips, P.C.B. (1973). The problem of identification in finite parameter continuous time models. In Bergstrom, A.R. (Eds.), Statistical inference in continuous time models (pp. 135173). Amsterdam: North-Holland.Google Scholar
Raftery, A.E. (1993). Bayesian model selection in structural equation models. In Bollen, K.A., Long, J.S. (Eds.), Testing structural equation models. Newbury Park CA: Sage.Google Scholar
Ruymgaart, P.A., Soong, T.T. (1985). Mathematics of Kalman-Bucy filtering. Berlin: Springer.CrossRefGoogle Scholar
Schwarz, G. (1978). Estimating the dimension of a model. Annals of Statistics, 6, 461464.CrossRefGoogle Scholar
Singer, H. (1991). LSDE—A program package for the simulation, graphical display, optimal filtering and maximum likelihood estimation of linear stochastic differential equations: User's guide. Meersburg: Author.Google Scholar
Singer, H. (1993). Continuous-time dynamical systems with sampled data, errors of measurement and unobserved components. Journal of Time Series Analysis, 14, 527545.CrossRefGoogle Scholar
Singer, H. (1995). Analytic score function for irregularly sampled continuous time stochastic processes with control variables and missing values. Econometric Theory, 11, 721735.CrossRefGoogle Scholar
Singer, H. (1998). Continuous panel models with time dependent parameters. Journal of Mathematical Sociology, 23, 7798.CrossRefGoogle Scholar
Tuma, N.B., Hannan, M. (1984). Social dynamics. New York: Academic Press.Google Scholar