Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-08T11:35:56.592Z Has data issue: false hasContentIssue false

Confidence Regions for INDSCAL using the Jackknife and Bootstrap Techniques

Published online by Cambridge University Press:  01 January 2025

Sharon L. Weinberg*
Affiliation:
New York University
J. Douglas Carroll
Affiliation:
AT&T Bell Laboratories
Harvey S. Cohen
Affiliation:
AT&T Information Systems
*
Requests for reprints should be sent to Sharon L. Weinberg, 933 Shimkin Hall, Program of Educational Statistics, New York University, New York, N.Y. 10003.

Abstract

Bootstrap and jackknife techniques are used to estimate ellipsoidal confidence regions of group stimulus points derived from INDSCAL. The validity of these estimates is assessed through Monte Carlo analysis. Asymptotic estimates of confidence regions based on a MULTISCALE solution are also evaluated. Our findings suggest that the bootstrap and jackknife techniques may be used to provide statements regarding the accuracy of the relative locations of points in space. Our findings also suggest that MULTISCALE asymptotic estimates of confidence regions based on small samples provide an optimistic view of the actual statistical reliability of the solution.

Type
Original Paper
Copyright
Copyright © 1984 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

The authors wish to thank Geert DeSoete, Richard A. Harshman, William Heiser, Jon Kettenring, Joseph B. Kruskal, Jacqueline Meulman, James O. Ramsay, John W. Tukey, Paul A. Tukey, and Mike Wish.

Sharon L. Weinberg is a consultant at AT&T Bell Laboratories, Murray Hill, New Jersey 07974.

References

Carroll, J. D. & Arabie, P. (1980). Multidimensional scaling. In Rosenzweig, M. R., Porter, L. W. (Eds.), Annual Review of Psychology, Palo Alto, CA: Annual Reviews.Google Scholar
Carroll, J. D. & Chang, J. J. (1970). Analysis of individual differences in multidimensional scaling via anN-way generalization of Eckart-Young decomposition. Psychometrika, 35, 283319.CrossRefGoogle Scholar
Carroll, J. D. & Wish, M. (1974). Models and methods for three-way multidimensional scaling. In Krantz, D. H., Atkinson, R. C., Luce, R. D. & Suppes, P. (Eds.), Contemporary developments in mathematical psychology, Vol. II, San Francisco: Freeman.Google Scholar
Clarkson, D. B. (1979). Estimating the standard errors of rotated factor loadings jackknifing. Psychometrika, 44, 297314.CrossRefGoogle Scholar
Efron, B. (1979). Bootstrap methods: Another look at the jackknife. Annals of Statistics, 7, 126.CrossRefGoogle Scholar
Efron, B. (1982). The jackknife, the bootstrap and other resampling plans. SIAM, monograph #38, CBMS-NSF.CrossRefGoogle Scholar
Efron, B., Gong, G. (1983). A leisurely look at the bootstrap, the jackknife, and cross-validation. The American Statistician, 37, 3648.CrossRefGoogle Scholar
Hartigan, J. A. (1969). Using subsample values as typical values. Journal of the American Statistical Association, 64, 13031317.CrossRefGoogle Scholar
Heiser, W. (1981). Unfolding analysis of proximity data. Ph.D. dissertation, Department of Datatheory, University of Leiden.Google Scholar
Horan, C. B. (1969). Multidimensional scaling: Combining observations when individuals have different perceptual structures. Psychometrika, 34, 139165.CrossRefGoogle Scholar
Miller, R. G. (1974). The jackknife—a review. Biometrika, 61, 115.Google Scholar
Mosteller, F. & Tukey, J. W. (1968). Data analysis, including statistics. In Lindzey, G., Aronson, E. (Eds.), Handbook of Social Psychology, Reading, Mass: Addison-Wesley.Google Scholar
Pennell, R. (1972). Routinely computable confidence intervals for factor loadings using the “jackknife.”. British Journal of Mathematical and Statistical Psychology, 25, 107114.CrossRefGoogle Scholar
Quenouille, M. H. (1949). Approximate tests of correlation in time series. Journal of the Royal Statistical Society, Ser. B, 11, 1884.CrossRefGoogle Scholar
Quenouille, M. H. (1956). Notes on bias in estimation. Biometrika, 43, 353360.CrossRefGoogle Scholar
Ramsay, J. O. (1968). Economical method of analyzing perceived color differences. Journal of the Optical Society of America, 58, 1922.CrossRefGoogle ScholarPubMed
Ramsay, J. O. (1977). Maximum likelihood estimation in multidimensional scaling. Psychometrika, 42, 241266.CrossRefGoogle Scholar
Ramsay, J. O. (1978). Confidence regions for multidimensional scaling analysis. Psychometrika, 43, 145160.CrossRefGoogle Scholar
Ramsay, J. O. (1978). MULTISCALE: Four programs for multidimensional scaling by the method of maximum likelihood, Chicago: National Educational Resources, Inc..Google Scholar
Ramsay, J. O. (1980). Some small sample results for maximum likelihood estimation in multidimensional scaling. Psychometrika, 45, 139144.CrossRefGoogle Scholar
Ramsay, J. O. (1982a). MULTISCALE II Manual.Google Scholar
Ramsay, J. O. (1982). Some statistical approaches to multidimensional scaling data. Journal of the Royal Statistical Society, Ser. A, 145, 285312.CrossRefGoogle Scholar
Tatsuoka, M. M. (1971). Multivariate analysis: Techniques for educational and psychological research, New York: Wiley.Google Scholar
Torgerson, W. S. (1958). Theory and methods of scaling, New York: Wiley.Google Scholar
Tukey, J. W. (1958). Bias and confidence in not-quite so large samples (Abstract). Annals of Mathematical Statistics, 29, 614614.Google Scholar
Weinberg, S. L., Carroll, J. D., & Cohen, H. S. (1981). Estimating confidence regions for INDSCAL-derived group stimulus points using jackknifing. Unpublished manuscript, Bell Laboratories.Google Scholar
Weinberg, S. L., Carroll, J. D., & Cohen, H. S. (1982). Confidence regions for INDSCAL using the jackknife and bootstrap techniques. Unpublished manuscript, Bell Laboratories.Google Scholar
Wish, M. & Carroll, J. D. (1982). Multidimensional scaling and its applications. In Krishnaiah, P. R., Kanal, L. N. (Eds.), Handbook of Statistics, Vol. 2, Amsterdam: North Holland Publishing Company.Google Scholar