Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-07T18:20:47.007Z Has data issue: false hasContentIssue false

A Comparison of the Classification Capabilities of the 1-Dimensional Kohonen Neural Network with Two Pratitioning and Three Hierarchical Cluster Analysis Algorithms

Published online by Cambridge University Press:  01 January 2025

Niels G. Waller*
Affiliation:
University of California, Davis
Heather A. Kaiser
Affiliation:
University of California, Davis
Janine B. Illian
Affiliation:
University of Duesseldorf
Mike Manry
Affiliation:
University of Texas at Arlington
*
Requests for reprints should be sent to Niels G. Waller, Department of Psychology, University of California, Davis CA 95616. E-mail: [email protected].

Abstract

Neural Network models are commonly used for cluster analysis in engineering, computational neuroscience, and the biological sciences, although they are rarely used in the social sciences. In this study we compare the classification capabilities of the 1-dimensional Kohonen neural network with two partitioning (Hartigan and Späth k-means) and three hierarchical (Ward's, complete linkage, and average linkage) cluster methods in 2,580 data sets with known cluster structure. Overall, the performance of the Kohonen networks was similar to, or better than, the performance of the other methods.

Type
Original Paper
Copyright
Copyright © 1998 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

American Psychological Association. (1992). PsycINFO users manual, Washington, DC: Author.Google Scholar
Anderson, J. A.. (1995). An introduction to neural networks, Cambridge, MA: the MIT Press.CrossRefGoogle Scholar
Angéniol, B., de la Croix Vaubois, G., & Texier, J. Y. (1988). Self-organizing feature maps and the traveling salesman problem. Neural Networks, 1, 289293.CrossRefGoogle Scholar
Atiya, , Amir, F. (1990). An unsupervised learning technique for artificial neural networks. Neural Networks, 3, 7077111.CrossRefGoogle Scholar
Balakrishan, P. V., Cooper, M. C., Jacob, V. S., & Lewis, P. A. (1994). A study of the classification capabilities of neural networks using unsupervised learning: A comparison with K-Means clustering. Psychometrika, 59, 509525.CrossRefGoogle Scholar
Bayne, C. K., Beauchamp, J. J., Begovich, C. L., & Kane, V. E. (1980). Monte Carlo comparisons of selected clustering procedures. Pattern Recognition, 12, 5162.CrossRefGoogle Scholar
Blashfield, R. K. (1976). Mixture model tests of cluster analysis: Accuracy of four agglomerative hierarchical methods. Psychological Bulletin, 83, 377388.CrossRefGoogle Scholar
Blashfield, R. K., & Aldenderfer, M. S. (1988). The methods and problems of cluster analysis. In Nesselroade, J., & Cattell, R. B. (Eds.), Handbook of multivariate experimental psychology (2nd ed., pp. 447474). New York: Plenum Press.CrossRefGoogle Scholar
Chen, S. K., Mangiameli, P., & West, D. (1995). The comparative ability of self-organizing neural networks to define cluster structure. Omega International Journal of Management Science, 23, 271279.CrossRefGoogle Scholar
Cheng, R., & Milligan, G. W. (1995). Mapping influence regions in hierarchical clustering. Multivariate Behavioral Research, 30, 547576.CrossRefGoogle Scholar
Childress, M. (1981). Statistics for evaluating classifications: A new view. Paper presented at the meeting of the Classification Society Annual Meeting..Google Scholar
Churchland, P. S., & Sejnowski, T. J.. (1992). The computational brain, Cambridge, MA: The MIT Press.CrossRefGoogle Scholar
Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational and Psychological Measurement, 20, 3746.CrossRefGoogle Scholar
Cormack, R. M. (1971). A review of classification. Journal of the Royal Statistical Society, Series A, 134, 321367.CrossRefGoogle Scholar
Darken, C., & Moody, J. (1990). Fast adaptive k-means clustering: Some empirical results. Proceedings of the International Joint Conference on Neural Networks, II, 233238.Google Scholar
Donoghue, J. R. (1995). The effects of within-group covariance structure on recovery in cluster analysis: I. The bivariate case. Multivariate Behavioral Research, 30, 227254.CrossRefGoogle ScholarPubMed
Downton, M., & Brennan, T. (1980). Comparing classifications: An evaluation of several coefficients of partition agreement. Paper presented at the Classification Society Annual Meeting..Google Scholar
Everitt, B.. (1993). Cluster analysis, (3rd ed.). New York: Halsted Press.Google Scholar
Fowlkes, E. B., & Mallows, C. L. (1980). A new measure of similarity between two hierarchical clusterings and its use in studying hierarchical clustering methods. Paper presented at the meeting of the Classification Society Annual Meeting..Google Scholar
Hartigan, J. A.. (1975). Clustering algorithms, New York: Wiley.Google Scholar
Hartigan, J. A., & Wong, M. A. (1979). A k-means clustering algorithm. Applied Statistics, 28, 100108.CrossRefGoogle Scholar
Haykin, S. S.. (1994). Neural networks: A comprehensive foundation, New York: Macmillan.Google Scholar
Hays, D. L.. (1973). Statistics for the social sciences (2nd ed.), New York: Holt, Rhinehart & Winston.Google Scholar
Hebb, D. O.. (1949). The organization of behavior, New York: Wiley.Google Scholar
Hubel, D. H., & Wiesel, T. N. (1962). Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. Journal of Physiology (London), 160, 106154.CrossRefGoogle ScholarPubMed
Hubel, D. H, & Wiesel, T. N. (1977). Functional architecture of macaque visual cortex. Proceedings of the Royal Society of London, Series B, 198, 159.Google Scholar
Hubert, L., & Arabie, P. (1985). Comparing partitions. Journal of Classification, 2, 193218.CrossRefGoogle Scholar
INSPEC, Institution of Electrical Engineers. (1991). INSPEC user manual, Stevenage, Herts., U. K.: Autor.Google Scholar
Kinderman, A. J., & Monahan, J. F. (1977). Computer generation of random variables using the ratio of uniform deviates. ACM Transactions on Mathematical Software, 3, 257260.CrossRefGoogle Scholar
Kohonen, T.. (1995). Self-organizing maps, Berlin, Heidelberg, New York: Springer.CrossRefGoogle Scholar
Kohonen, T., Kangas, J., & Laaksonen, J.. (1995). SOM_PAK: The Self-Organizing MAP Program Package, Version 3.1 [Computer program], Rakentajanaukio 2 C, SF-02150 Espoo, Finland: Helsinki University of Technology, Laboratory of Computer and Information Science.CrossRefGoogle Scholar
Kuiper, F. K., & Fisher, L. (1975). A Monte Carlo comparison of six clustering procedures. Biometrics, 31, 777783.CrossRefGoogle Scholar
McCulloch, W. S., & Pitts, W. H. (1943). A logical calculus of ideas immanent in nervous activity. Bulletin of Mathematical Biophysics, 5, 115133.CrossRefGoogle Scholar
Milligan, G. W. (1980). An examination of the effect of six types of error perturbation on fifteen clustering algorithms. Psychometrika, 45, 325342.CrossRefGoogle Scholar
Milligan, G. W. (1981). A review of Monte Carlo tests of cluster analysis. Multivariate Behavioral Research, 16, 379407.CrossRefGoogle ScholarPubMed
Milligan, G. W. (1983). Characteristics of four external criterion measures. In Felsenstein, J. (Ed.), Numerical taxonomy, Berlin: Germany: Springer-Verlag.Google Scholar
Milligan, G. W. (1985). An algorithm for generating artificial test clusters. Psychometrika, 50, 123127.CrossRefGoogle Scholar
Milligan, G. W., & Cooper, M. C. (1987). Methodology review: Clustering methods. Applied Psychological Measurement, 11(4), 329354.CrossRefGoogle Scholar
Milligan, G. W., & Schilling, D. A. (1985). Asymptotic and finite-sample characteristics of four external criterion measures. Multivariate Behavioral Research, 20, 97109.CrossRefGoogle ScholarPubMed
Morey, L. (1981). The measurement of classification agreement: An adjustment to the Rand Index for chance agreement. Paper presented at the meeting of the Classification Society Annual Meeting..Google Scholar
Murtagh, F., & Hernández-Pajares, M. (1995). The Kohonen self-organizing map method: An assessment. Journal of Classification, 12, 165190.CrossRefGoogle Scholar
NeuralWare, . (1991). Neuralworks Professional II/Plus [software manual], Pittsburgh, PA: Author.Google Scholar
Pal, N. R., Bezdek, J. C., & Tsao, E. C-K. (1993). Generalized clustering networks and Kohonen's self-organizing scheme. IEEE Transactions on Neural Networks, 4, 549557.CrossRefGoogle ScholarPubMed
Rand, W. M. (1971). Objective criteria for the evaluation of clustering methods. Journal of the American Statistical Association, 66, 846850.CrossRefGoogle Scholar
Ripley, B. D. (1993). Statistical aspects of neural networks. In Bandorff-Nielsen, O. E., Jensen, J. L., & Kendall, W. S. (Eds.), Network and chaos—Statistical and probabilistic aspects (pp. 40123), London: Chapman and Hall.CrossRefGoogle Scholar
Rumelhart, D. E., McClelland, J. L., the PDP Research Group. (1987). Parallel distributed processing: Explorations in the microstructure of cognition, Volume 1: Foundations, Cambridge, MA: MIT Press.Google Scholar
Scheibler, D., & Schneider, W. (1985). Monte Carlo tests of the accuracy of cluster analysis algorithms: A comparison of hierarchical and nonhierarchical methods. Multivariate Behavioral Research, 20, 283304.CrossRefGoogle ScholarPubMed
Smith, M.. (1993). Neural networks for statistical modeling, New York, NY: Van Nostrand Reinhold.Google Scholar
Sokal, R., Michener, C. D. (1958). A statistical method for evaluating systematic relationships. University of Kansas Scientific Bulletin, 38, 14091438.Google Scholar
Späth, H.. (1985). Cluster dissection and analysis: Theory, Fortran examples, New York: Ellis Horwood.Google Scholar
StatSci.. (1993). S-Plus for Windows users manual, Seattle, WA: Statistical Sciences, Inc..Google Scholar
Vinod, V. V., Chaudhury, S., Mukherjee, J., & Ghose, S. (1994). A connectionist approach for clustering with applications in image analysis. IEEE Transactions on Systems, Man, & Cybernetics, 3, 365384.CrossRefGoogle Scholar
Waller, N. G., Underhill, J. M., & Kaiser, H. A. (1996). A method for generating simulated plasmodes and artifical test clusters with user-defined shape, size, and orientation. Manuscript submitted for publication..Google Scholar
Ward, J. H. (1963). Hierarchical grouping to optimize an objective function. Journal of the American Statistical Association, 58, 236244.CrossRefGoogle Scholar
Wothke, W. (1993). Nonpositive definite matrices in structural modeling. In Bollen, K. A., & Long, J. S. (Ed.), Testing structural equation models (pp. 256293), Newbury Park: SAGE.Google Scholar