Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2025-01-06T05:37:30.407Z Has data issue: false hasContentIssue false

CFA Models with a General Factor and Multiple Sets of Secondary Factors

Published online by Cambridge University Press:  01 January 2025

Minjeong Jeon*
Affiliation:
University of California, Los Angeles
Frank Rijmen
Affiliation:
American Institutes for Research
Sophia Rabe-Hesketh
Affiliation:
University of California, Berkeley
*
Correspondence should be made to Minjeong Jeon, Department of Education, University of California, Los Angeles, 457 Portola Plaza, Los Angeles, CA 90095, USA. Email: [email protected]

Abstract

We propose a class of confirmatory factor analysis models that include multiple sets of secondary or specific factors and a general factor. The general factor accounts for the common variance among manifest variables, whereas multiple sets of secondary factors account for the remaining source-specific dependency among subsets of manifest variables. A special case of the model is further proposed which constrains the specific factor loadings to be proportional to the general factor loadings. This proportional model substantially reduces the number of model parameters while preserving the essential structure of the general model. Furthermore, the proportional model allows for the interpretation of latent variables as the expected values of the observed manifest variables, decomposition of the variances, and the inclusion of interactions, similar to generalizability theory. We provide two applications to illustrate the utility of the proposed class of models.

Type
Original Paper
Copyright
Copyright © 2018 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barker Lunn, J.(1970).Streaming in the primary school.Sussex:King, Thorne, & Stace.Google Scholar
Bauer, D. J.,Howard, A. L.,Baldasaro, R. E.,Curran, P. J.,Andrea, M. H.,Chassin, L., &Zucker, R.(2013).A trifactor model for integrating ratings across multiple informants.Psychological Methods,18,475493.CrossRefGoogle ScholarPubMed
Becker, T. E.,Cote, J. A.(1994).Additive and multiplicative method effects in applied psychological research: An empirical assessment of three methods.Journal of Management,20,625641.CrossRefGoogle Scholar
Bentler, P. M.(1976).Multistructure statistical model applied to factor analysis.Multivariate Bahavioral Research,11,325.CrossRefGoogle ScholarPubMed
Bollen, K. A., &Bauldry, S.(2010).Model identification and computer algebra.Sociological Methods and Research,39,127156.CrossRefGoogle ScholarPubMed
Bowler, M. C., &Woehr, D. J.(2006).A meta-analytic evaluation of the impact of dimension and exercise factors on assessment center ratings.Journal of Applied Psychology,91,11141124.CrossRefGoogle ScholarPubMed
Bradlow, E. T.,Wainer, H., &Wang, X.(1999).A Bayesian random effects model for testlets.Psychometrika,64,153168.CrossRefGoogle Scholar
Brennan, R. L.(2001).Generalizability theory,New York:Springer.CrossRefGoogle Scholar
Cai, L.(2010).A two-tier full-information item factor analysis model with applications.Psychometrika,75,581612.CrossRefGoogle Scholar
Campbell, D. T., &Fiske, D. W.(1959).Convergent and discriminant validation by the multitrait-multimethod matrix.Psychological Bulletin,56,81105.CrossRefGoogle ScholarPubMed
Cole, D.,Ciesla, J. A., &Steiger, J. H.(2007).The insidious effects of failing to include design-driven correlated residuals in latent-variable covariance structure analysis.Psychological Methods,4,381398.CrossRefGoogle Scholar
Cronbach, L.,Gleser, G.,Nanda, H., &Rajaratnam, N.(1972).The dependability of behavioral measurements: Theory of generalizability for scores and profiles,New York:Wiley.Google Scholar
Davis, W.(1993).The fc1 rule of identification for confirmatory factor analysis.Sociological Methods and Research,21,403407.CrossRefGoogle Scholar
Eid, M.(2000).A multitrait-multimethod model with minimal assumptions.Psychometrika,65,241261.CrossRefGoogle Scholar
Eid, M.,Geiser, C.,Koch, T., &Heene, M.(2017).Anomalous results in g-factor models: Explanations and alternatives.Psychological Methods,22,541562.CrossRefGoogle ScholarPubMed
Eid, M.,Nussbeck, F. W.,Geiser, C.,Cole, D. A.,Gollwitzer, M., &Lischetzke, T.(2008).Structural equation modeling of multitrait-multimethod data: Different models for different types of methods.Psychological Methods,13,230253.CrossRefGoogle ScholarPubMed
Hoffman, B. J.,Melchers, K. G.,Blair, C. A.,Kleinmann, M., &Ladd, R.(2011).Exercises and dimensions are the currency of assessment centers.Personnel Psychology,64,351395.CrossRefGoogle Scholar
Hu, L., &Bentler, P. M.(1999).Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives.Structural Equation Modeling,6,155.CrossRefGoogle Scholar
Jöreskog, K. G.(1970).A general method for analysis of covariance structures.Biometrika,57,239251.CrossRefGoogle Scholar
Kenny, D. A.(1976).An empirical application of confirmatory factor analysis to the multitrait-multimethod matrix.Journal of Experimental Social Psychology,12,247252.CrossRefGoogle Scholar
Kenny, D. A.(1979).Correlation and causality,New York, NY:Wiley.Google Scholar
Lance, C. E.,Lambert, T. A.,Gerwin, A. G.,Lievens, F., &Conway, J. M.(2004).Revised estimates of dimension and exercise variance components in assessment center postexercise dimension ratings.Journal of Applied Psychology,89,377385.CrossRefGoogle ScholarPubMed
Lievens, F., Dilchert, S., &Ones, D.(2009).The importance of exercise and dimension factors in assessment centers: Simultaneous examinations of construct-related and criterion-related validity.Human Performance,22,375390.CrossRefGoogle Scholar
MacCallum, R. C.,Browne, M. W., &Sugawara, H. M.(1996).Power analysis and determination of sample size for covariance structure modeling.Psychological Methods,1,130149.CrossRefGoogle Scholar
Marsh, H. W.(1989).Confirmatory factor analyses of multitrait-multimethod data: Many problems and a few solutions.Applied Psychological Measurement,13,335361.CrossRefGoogle Scholar
McDonald, R. P.(1982).A note on the investigation of local and global identifiability.Psychometrika,47,101103.CrossRefGoogle Scholar
McDonald, R. P.(1999).Test theory: A unified approach,Mahwah, NJ:Erlbaum.Google Scholar
Mellenbergh, G. J.,Kelderman, H.,Stijlen, J. G., &Zondag, E.(1979).Linear models for the analysis and construction of instruments in a facet design.Psychological Bulletin,86,766776.CrossRefGoogle Scholar
Mellon, P., &Crano, W. D.(1977).An extension and application of the multitrait-multimethod matrix technique.Journal oi Educational Psychology,69,716723.CrossRefGoogle Scholar
Muthén, L., &Muthén, B.(2008).Mplus user’s guide,Angeles, CA:Muthen & Muthen.Google Scholar
Pohl, S., &Steyer, R.(2010).Modeling common traits and method effects in multitrait.multimethod analysis.Multivariate Behavioral Research,45,4572.CrossRefGoogle ScholarPubMed
Raykov, T.(1997).Scale reliability, Cronbach’s coefficient alpha, and violations of essential tau-equivalence for fixed congeneric components.Multivariate Behavioral Research,32,329354.CrossRefGoogle ScholarPubMed
Raykov, T., &Marcoulides, G. A.(2006).Estimation of generalizability coefficients via a structural equation modeling approach to scale reliability evaluation.International Journal of Testing,6,8195.CrossRefGoogle Scholar
Reise, S. P., Moore, T. M., &Geisinger, K.(2013).Applying unidimensional item response theory models to psychological data.APA handbook of testing and assessment in psychology. Test theory and testing and assessment in industrial and organizational psychology,Washington, DC:American Psychological Association.101119.Google Scholar
Reise, S. P.,Moore, T. M., &Haviland, M. G.(2010).Bifactor models and rotations: Exploring the extent to which multidimensional data yield univocal scale scores.Journal of Personality Assessment,92,544559.CrossRefGoogle ScholarPubMed
Reise, S. P.,Scheines, R.,Widaman, K. F., &Haviland, M. G.(2013).Multidimensionality and structural coefficient bias in structural equation modeling: A bifactor perspective.Educational and Psychological Measurement,73,526.CrossRefGoogle Scholar
Rijmen, F.(2010).Formal relations and an empirical comparison between the bi-factor, the testlet, and a second-order multidimensional IRT model.Journal of Educational Measurement,47,361372.CrossRefGoogle Scholar
Rijmen, F.,Jeon, M.,von Davier, M., &Rabe-Hesketh, S.(2014).A third-order item response theory model for modeling the effects of domains and subdomains in large-scale educational assessment surveys.Journal of Educational and Behavioral Statistics,39,235256.CrossRefGoogle Scholar
Rodriguez, A.,Reise, S. P., &Haviland, M. G.(2016).Evaluating bifactor models: Calculating and interpreting statistical indices.Psychological Methods,21,137150.CrossRefGoogle ScholarPubMed
Schmid, J., &Leiman, J. M.(1957).The development of hierarchical factor solutions.Psychometrika,22,5361.CrossRefGoogle Scholar
Schneider, J. R., &Schmitt, N.(1992).An exercise design approach to understanding assessment center dimension and exercise constructs.Journal of Applied Psychology,77,3241.CrossRefGoogle Scholar
Skrondal, A., &Rabe-Hesketh, S.(2004).Generalized latent variable modeling: Multilevel, longitudinal, and structural equation models,Boca Raton, FL:Chapman & Hall/CRC.CrossRefGoogle Scholar
Steyer, R.,Ferring, D., &Schmitt, M. J.(1992).States and traits in psychological assessment.European Journal of Psychological Assessment,8,7998.Google Scholar
Stucky, B. D.,Thissen, D., &Edelen, M. O.(2013).Using logistic approximations of marginal trace lines to develop short assessments.Applied Psychological Measurement,37,4157.CrossRefGoogle Scholar
Wainer, H.(1995).Precision and differential item functioning on a testlet-based test: The 1991 Law School Admissions Test as an example.Applied Psychological Measurement,8,157186.Google Scholar
Wainer, H.,Bradlow, E., &Wang, X.(2007).Testlet response theory and its applications,New York, NY:Cambridge University Press.CrossRefGoogle Scholar
Wainer, H., &Thissen, D.(1996).How is reliability related to the quality of test scores? What is the effect of local dependence on reliability?.Educational Measurement: Issues and Practice,15,2229.CrossRefGoogle Scholar
Wald, A., &Koopmans, T. C.(1950).A note on the identification of econometric relations.Statistical inference in dynamic economic models,New York:Wiley.238244.Google Scholar
Widaman, F.(1985).Hierarchically nested covariance structure models for multitrait-multimethod data.Applied Psychological Measurement,9,126.CrossRefGoogle Scholar
Woehr, D. J.,Putka, D. J., &Bowler, M. C.(2012).An examination of G-theory methods for modeling multitrait multimethod data: Clarifying links to construct validity and confirmatory factor analysis.Organizational Research Methods,15,134161.CrossRefGoogle Scholar
Wolfram Research, Inc (2010). Mathematica Edition: Version 8.0. Champaign, IL: Wolfram Research, Inc.Google Scholar
Yung, Y-F,Thissen, D., &McLeod, L.(1999).On the relationship between the higher-order factor model and the hierarchical factor model.Psychometrika,64,113128.CrossRefGoogle Scholar
Supplementary material: File

Jeon et al. supplementary materials

Appendix A-F
Download Jeon et al. supplementary materials(File)
File 114 KB