Hostname: page-component-599cfd5f84-wh4qq Total loading time: 0 Render date: 2025-01-07T07:35:12.238Z Has data issue: false hasContentIssue false

Bayesian Sensitivity Analysis of a Nonlinear Dynamic Factor Analysis Model with Nonparametric Prior and Possible Nonignorable Missingness

Published online by Cambridge University Press:  01 January 2025

Niansheng Tang
Affiliation:
Yunnan University
Sy-Miin Chow*
Affiliation:
Pennsylvania State University
Joseph G. Ibrahim
Affiliation:
Unisversity of North Carolina at Chapel Hill
Hongtu Zhu
Affiliation:
Unisversity of North Carolina at Chapel Hill
*
Correspondence should be made to Sy-Miin Chow, Department of Human Development and Family Studies, Pennsylvania State University, 413 Biobehavioral Health Building, University Park, PA 16802, USA. Email: [email protected]

Abstract

Many psychological concepts are unobserved and usually represented as latent factors apprehended through multiple observed indicators. When multiple-subject multivariate time series data are available, dynamic factor analysis models with random effects offer one way of modeling patterns of within- and between-person variations by combining factor analysis and time series analysis at the factor level. Using the Dirichlet process (DP) as a nonparametric prior for individual-specific time series parameters further allows the distributional forms of these parameters to deviate from commonly imposed (e.g., normal or other symmetric) functional forms, arising as a result of these parameters’ restricted ranges. Given the complexity of such models, a thorough sensitivity analysis is critical but computationally prohibitive. We propose a Bayesian local influence method that allows for simultaneous sensitivity analysis of multiple modeling components within a single fitting of the model of choice. Five illustrations and an empirical example are provided to demonstrate the utility of the proposed approach in facilitating the detection of outlying cases and common sources of misspecification in dynamic factor analysis models, as well as identification of modeling components that are sensitive to changes in the DP prior specification.

Type
Original Paper
Copyright
Copyright © 2017 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Electronic supplementary material The online version of this article (doi:10.1007/s11336-017-9587-4) contains supplementary material, which is available to authorized users.

N. Tang and S.-M. Chow: These two authors contributed equally to the work.

References

Amari, S. I. (1990). Differential-geometrical methods in statistics (2nd ed.). Lecture Notes in Statistics 28. Berlin: Springer.Google Scholar
Ansari, A. & Iyengar, R. (2006). Semiparametric Thurstonian models for recurrent choices: A Bayesian analysis. Psychometrika 71 (4), 631657CrossRefGoogle Scholar
Antoniak, C. E. (1974). Mixtures of Dirichlet processes with applications to Bayesian nonparametric problems. The Annals of Statistics 2 (6), 11521174CrossRefGoogle Scholar
Berger, J. O. (1994). An overview of robust Bayesian analysis. Test 3, 558CrossRefGoogle Scholar
Berger, J. O. (2004). Encyclopedia of statistical sciences New York: Wiley 00101 Bayes FactorsGoogle Scholar
Blozis, S. A. Ge, X. Xu, S. Natsuaki, M. N. Shaw, D. S. Neiderhiser, J. M. Scaramella, L. V. Leve, L. D. & Reiss, D. (2013). Sensitivity analysis of multiple informant models when data are not missing at random. Structural Equation Modeling: A Multidisciplinary Journal 20 (2), 283298CrossRefGoogle Scholar
Browne, M. W. Nesselroade, J. R. Maydeu-Olivares, A. & McArdle, J. J. (2005). Representing psychological processes with dynamic factor models: Some promising uses and extensions of autoregressive moving average time series models. Contemporary psychometrics: A Festschrift for Roderick P. McDonald Mahwah, NJ: Erlbaum 415452Google Scholar
Chen, M.-H. & Shao, Q.-M. (1999). Monte Carlo estimation of Bayesian credible and HPD intervals. Journal of Computational and Graphical Statistics 8, 6992CrossRefGoogle Scholar
Chow, S.-M. Nesselroade, J. R. Shifren, K. & McArdle, J. J. (2004). Dynamic structure of emotions among individuals with Parkinson’s disease. Structural Equation Modeling 11, 560582CrossRefGoogle Scholar
Chow, S.-M., Tang, N., Ibrahim, J. G., & Zhu, H. (2017). Nonlinear dynamic factor analysis model with nonignorable missingness for ecological momentary assessment affect data. (Under review).Google Scholar
Chow, S.-M. Tang, N. Yuan, Y. Song, X. & Zhu, H. (2011). Bayesian estimation of semiparametric dynamic latent variable models using the dirichlet process prior. British Journal of Mathematical and Statistical Psychology 64 (1), 69106CrossRefGoogle Scholar
Copas, J. & Eguchi, S. (2005). Local model uncertainty and incomplete data bias (with discussion). Journal of the Royal Statistical Society Series B 67, 459512CrossRefGoogle Scholar
Daniels, M. J. & Hogan, J. W. (2008). Missing data in longitudinal studies: Strategies for Bayesian modeling and sensitivity analysis London: Chapman and HallCrossRefGoogle Scholar
De Beuckelaer, A. Swinnen, G. Davidov, E. Schmidt, P. & Billiet, J. (2011). Biased latent variable mean comparisons due to measurement non-invariance: A simulation study. Cross-cultural analysis : Methods and applications Milton Park: Taylor & Francis Group 117148Google Scholar
Dey, D. K. Ghosh, S. K. Lou, K. R. Berger, J. O. Betro, B. Moreno, E. Pericchi, L. R. Ruggeri, F. Salinetti, G. & Wasserman, L. (1996). On local sensitivity measures in Bayesian (with discussion). IMS Lecture Notes-Monograph Series Hayward, CA: Institute of Mathematical Statistics 2139Google Scholar
Diener, E. Fujita, F. & Smith, H. (1995). The personality structure of affect. Journal of Personality and Social Psychology 69 (1), 130141CrossRefGoogle Scholar
Duncan, K. A. & MacEachern, S. N. (2008). Nonparametric Bayesian modelling for item response. Statistical Modeling 8 (1), 4166CrossRefGoogle Scholar
Dunson, D. B. (2008). Nonparametric Bayes applications to biostatistics. In Nonparametric Bayes Statistical Modeling. New York: Cambridge University Press.Google Scholar
Engle, R. F. & Watson, M. (1981). A one-factor multivariate time series model of metropolitan wage rates. Journal of the American Statistical Association 76, 774781CrossRefGoogle Scholar
Ferguson, & Thomas, S. (1973). A Bayesian analysis of some nonparametric problems. The Annals of Statistics 1 (2), 209230CrossRefGoogle Scholar
Ferrer, E. & Nesselroade, J. R. (2003). Modeling affective processes in dyadic relations via dynamic factor analysis. Emotion 3, 344360CrossRefGoogle ScholarPubMed
Forni, M. Hallin, M. Lippi, M. & Reichlin, L. (2005). The generalized dynamic factor model: One-sided estimation and forecasting. Journal of the American Statistical Association 100, 830840CrossRefGoogle Scholar
Gelman, A. & Rubin, D. B. (1992). Inference from iterative simulation using multiple sequences. Statistical Science 7 (4), 457472CrossRefGoogle Scholar
Geweke, J. F. Aigner, D. & Goldberger, A. (1977). The dynamic factor analysis of economic time-series models. Latent variables in socio-economic models New York: North-Holland 365383Google Scholar
Geweke, J. F. & Singleton, K. J. (1981). Maximum likelihood confirmatory factor analysis of economic time series. International Economic Review 22, 133137CrossRefGoogle Scholar
Gustafson, P. (1996). Local sensitivity of inferences to prior marginals. Journal of the American Statistical Association 91, 774781CrossRefGoogle Scholar
Gustafson, P. (1996). Local sensitivity of posterior expectations. Annals of Statistics 24, 174195CrossRefGoogle Scholar
Hens, N. Aerts, M. Molenberghs, G. Thijs, H. & Verbeke, G. (2006). Kernel weighted influence measures. Computational Statistics and Data Analysis 48, 467487CrossRefGoogle Scholar
Ibrahim, J. G. Chen, M. H. & Lipsitz, S. R. (1999). Monte Carlo EM for missing covariates in parametric regression models. Biometrics 55, 591596CrossRefGoogle ScholarPubMed
Ishwaran, H. & James, L. F. (2001). Gibbs sampling methods for stick breaking priors. Journal of the American Statistical Association 96, 161173CrossRefGoogle Scholar
Ishwaran, H. & Zarepour, M. (2000). Markov chain Monte Carlo in approximate Dirichlet and beta two-parameter process hierarchical models. Biometrika 87, 371390CrossRefGoogle Scholar
Jansen, I. Hens, N. Molenberghs, G. Aerts, M. Verbeke, G. & Kenward, M. G. (2006). The nature of sensitivity in monotone missing not at random models. Computational Statistics and Data Analysis 50, 830858CrossRefGoogle Scholar
Kaplan, D. & George, R. (1995). A study of the power associated with testing factor mean differences under violations of factorial invariance. Structural Equation Modeling: A Multidisciplinary Journal 2 (2), 101118CrossRefGoogle Scholar
Karabotsos, G. & Walker, S. G. (In press). Coherent psychometric modelling with Bayesian nonparametrics. British Journal of Mathematical and Statistical Psychology.Google Scholar
Kass, R. Tierney, L. & Kadane, J. (1989). Approximate methods for assessing influence and sensitivity in Bayesian analysis. Biometrika 76, 663674CrossRefGoogle Scholar
Lavine, M. (1991). Sensitivity in Bayesian statistics: The prior and the likelihood. Journal of the American Statistical Association 86, 396399CrossRefGoogle Scholar
Lee, S.-Y. (2007). Structural equation modeling: A Bayesian approach West Sussex: WileyCrossRefGoogle Scholar
Lee, S.-Y. Lu, B. & Song, X.-Y. (2007). Semiparametric Bayesian analysis of structural equation models with fixed covariates. Statistics in Medicine 27 (13), 23412360CrossRefGoogle Scholar
Lee, S.-Y. & Tang, N.-S. (2006). Analysis of nonlinear structural equation models with nonignorable missing covariates and ordered categorical data. Statistica Sinica 16, 11171141Google Scholar
Little, RJA & Rubin, D. B. (2002). Statistical analysis with missing data New York: WileyCrossRefGoogle Scholar
Lu, Z.-H. Chow, S.-M. & Loken, E. (2016). Bayesian factor analysis as a variable-selection problem: Alternative priors and consequences. Multivariate Behavioral Research 51 (4), 519539 PMID: 27314566CrossRefGoogle ScholarPubMed
Lütkepohl, H. (2005). Introduction to multiple time series analysis 2New York: SpringerCrossRefGoogle Scholar
Millar, R. B. & Stewart, W. S. (2007). Assessment of locally influential observations in Bayesian models. Bayesian Analysis 2, 365384CrossRefGoogle Scholar
Molenaar, PCM (1985). A dynamic factor model for the analysis of multivariate time series. Psychometrika 50, 181202CrossRefGoogle Scholar
Molenaar, PCM Jennings, J. R. Ackles, P. K. & Coles, MGH (1994). Dynamic factor analysis of psychophysiological signals. Advances in psychophysiology: A research annual London: Jessica Kingsley Publishers 229302Google Scholar
Musher-Eizenman, D. R. Nesselroade, J. R. & Schmitz, B. (2002). Perceived control and academic performance: A comparison of high- and low-performing children on within- person change patterns. International Journal of Behavioral Development 26, 540547CrossRefGoogle Scholar
Muthén, B. O. & Asparouhov, T. (2012). Bayesian SEM: A more flexible representation of substantive theory. Psychological Methods 17 (1), 313335CrossRefGoogle Scholar
Navarro, D. J. Griffiths, T. L. Steyvers, M. & Lee, M. D. (2006). Modeling individual differences using Dirichlet processes. Journal of Mathematical Psychology 50, 101122CrossRefGoogle Scholar
Nesselroade, J. R. McArdle, J. J. Aggen, S. H. & Meyers, J. M. Moskowitz, D. S. & Hershberger, S. L. (2002). Dynamic factor analysis models for representing process in multivariate time-series. Modeling intraindividual variability with repeated measures data: Methods and applications Mahwah, NJ: Lawrence Erlbaum Associates 235265Google Scholar
Plummer, M. (2003). JAGS: A program for analysis of Bayesian graphical models using Gibbs sampling. In Proceedings of the 3rd international workshop on distributed statistical computing.Google Scholar
Rotnitzky, A. & Wypij, D. (1994). A note on the bias of estimators with missing data. Biometrics 50 (4), 11631170CrossRefGoogle ScholarPubMed
Sbarra, D. A. (2006). Predicting the onset of emotional recovery following nonmarital relationship dissolution: Survival analyses of sadness and anger. Personality and Social Psychology Bulletin 32, 298312CrossRefGoogle ScholarPubMed
Sethuraman, J. (1994). A constructive definition of dirichlet priors. Statistica Sinica 4, 639650Google Scholar
Shi, X. Zhu, H. & Ibrahim, J. (2009). Local influence for generalized linear models with missing covariates. Biometrics 65, 11641174CrossRefGoogle ScholarPubMed
Tanner, M. & Wong, W. (1987). The calculation of posterior distributions by data augmentation (with discussion). Journal of the American Statistical Association 82, 528550CrossRefGoogle Scholar
Troxel, A. B. Lipsitz, S. R. & Harrington, D. P. (1998). Marginal models for the analysis of longitudinal measurements with nonignorable non-monotone missing data. Biometrika 85, 661672CrossRefGoogle Scholar
Troxel, A. B. Ma, G. & Heitjan, D. F. (2004). An index of local sensitivity to nonignorability. Statistica Sinica 14, 12211237Google Scholar
van der Linde, A. (2007). Local influence on posterior distributions under multiplicative modes of perturbation. Bayesian Analysis 2, 319332CrossRefGoogle Scholar
van Steen, K. Molenberghs, G. Verbeke, G. & Thijs, H. (2001). A local influence approach to sensitivity analysis of incomplete longitudinal ordinal data. Statistical Modelling 1 (2), 125142CrossRefGoogle Scholar
Verbeke, G. Molenberghs, G. Thijs, H. Lasaffre, E. & Kenward, M. G. (2001). Sensitivity analysis for non-random dropout: A local influence approach. Biometrics 57, 4350CrossRefGoogle Scholar
Weiss, R. (1996). An approach to Bayesian sensitivity analysis. Journal of the Royal Statistical Society Series B 58, 739750CrossRefGoogle Scholar
Zautra, A. J. Reich, J. W. Davis, M. C. Potter, P. T. & Nicolson, N. A. (2000). The role of stressful events in the relationship between positive and negative affects: Evidence from field and experimental studies. Journal of Personality 68, 927951CrossRefGoogle ScholarPubMed
Zhu, H. Ibrahim, J. G. Chi, Y.-Y. & Tang, N. (2012). Bayesian influence measures for joint models for longitudinal and survival data. Biometrics 68 (3), 954964CrossRefGoogle ScholarPubMed
Zhu, H. Ibrahim, J. G. Lee, S. Y. & Zhang, H. P. (2007). Appropriate perturbation and influence measures in local influence. Annals of Statistics 35 (6), 25652588CrossRefGoogle Scholar
Zhu, H. Ibrahim, J. G. & Tang, N. (2014). Bayesian sensitivity analysis of statistical models with missing data. Statistica Sinica 24 (2), 871896Google ScholarPubMed
Zhu, H. Ibrahim, J. G. & Tang, N. S. (2011). Bayesian local influence analysis: A geometric approach. Biometrika 98, 307323CrossRefGoogle ScholarPubMed
Supplementary material: File

Chow et al. supplementary material 1

Chow et al. supplementary material 1
Download Chow et al. supplementary material 1(File)
File 274.6 KB
Supplementary material: File

Chow et al. supplementary material 2

Chow et al. supplementary material 2
Download Chow et al. supplementary material 2(File)
File 41.6 KB