Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-07T18:18:33.407Z Has data issue: false hasContentIssue false

A Bayesian Approach to Nonlinear Latent Variable Models using the Gibbs Sampler and the Metropolis-Hastings Algorithm

Published online by Cambridge University Press:  01 January 2025

Gerhard Arminger*
Affiliation:
Bergische Universität Wuppertal, Department of Economics
Bengt O. Muthén
Affiliation:
University of California, Los Angeles Graduate School of Education & Information Studies
*
Requests for reprints should be sent to Gerhard Arminger, Department of Economics, FB6, Bergische Universität—GH Wuppertal, D-42097 Wuppertal, GERMANY.

Abstract

Nonlinear latent variable models are specified that include quadratic forms and interactions of latent regressor variables as special cases. To estimate the parameters, the models are put in a Bayesian framework with conjugate priors for the parameters. The posterior distributions of the parameters and the latent variables are estimated using Markov chain Monte Carlo methods such as the Gibbs sampler and the Metropolis-Hastings algorithm. The proposed estimation methods are illustrated by two simulation studies and by the estimation of a non-linear model for the dependence of performance on task complexity and goal specificity using empirical data.

Type
Original Paper
Copyright
Copyright © 1998 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

The first author is indebted to the Graduate School of Education and Information Studies at UCLA for providing a visiting professorship during the winter quarter 1994. The work of the first author was supported by a grant from the Deutsche Forschungsgemeinschaft. The work of the second author was supported by grant 1K02AA00230-01 from NIAAA and by grant 40859 from NIMH to C. Hendricks Brown's Prevention Science Methodology Group. The authors thank Donald Rubin and C. Hendricks Brown for a critical reading of the first draft of the paper. They are especially grateful for the technical assistance of Jörg Wittenberg of the Bergische Universität Wuppertal who designed the program BALAM (Bayesian Analysis of Latent Variable Models). The data for the empirical example have been generously provided by Heinz Holling of the University of Münster, Germany. The authors are indebted to an associate editor and to three anonymous reviewers of Psychometrika whose criticisms, comments and suggestions have been very helpful.

References

Anderson, T. W. (1984). An Introduction to multivariate statistical analysis 2nd ed.,, New York: Wiley.Google Scholar
Arminger, G., & Schoenberg, R. J. (1989). Pseudo maximum likelihood estimation and a test for misspecification in mean and covariance structure models. Psychometrika, 54, 409425.CrossRefGoogle Scholar
Arminger, G., Wittenberg, J., & Schepers, A. (1996). MECOSA3 User Guide, Friedrichsdorf, Germany: ADDITIVE GmbH.Google Scholar
Arnold, S. F. (1993). Gibbs Sampling. In Rao, C. R. (Eds.), Handbook of statistics (pp. 599625). Amsterdam: North Holland.Google Scholar
Besag, J., Green, P., Higdon, D., & Mengersen, K. (1995). Bayesian computation and stochastic systems. Statistical Science, 19(1), 366.Google Scholar
Box, G. E. P., & Tiao, G. C. (1973). Bayesian inference in statistical analysis, Reading: Addison-Wesley.Google Scholar
Browne, M. W. (1984). Asymptotic distribution-free methods for the analysis of covariance structures. British Journal of Mathematical and Statistical Psychology, 37, 6283.CrossRefGoogle ScholarPubMed
Carlin, B. P., & Louis, T. A. (1996). Bayes and empirical bayes methods for data analysis, London: Chapman & Hall.Google Scholar
Casella, G., & George, E. I. (1992). Explaining the Gibbs sampler. The American Statistican, 46, 167174.CrossRefGoogle Scholar
Chib, S., & Greenberg, E. (1995). Understanding the Metropolis-Hastings algorithm. The American Statistican, 49(4), 327335.CrossRefGoogle Scholar
Chib, S., & Greenberg, E. S. (1996). Markov chain Monte Carlo simulation methods in econometrics. Econometric Theory, 12(3), 409431.CrossRefGoogle Scholar
Early, P. C., Lee, C., & Hanson, L. A. (1990). Joint moderating effects of job experience and task component complexity: relations among goal setting, task strategies, and performance. Journal of Organizational Behavior, 11, 315.CrossRefGoogle Scholar
Gelfand, A. E., & Smith, A. F. M. (1990). Sampling-based approaches to calculating marginal densities. Journal of the American Statistical Association, 85, 398409.CrossRefGoogle Scholar
Gelman, A., Carlin, J. B., Stern, H. S., & Rubin, D. B. (1995). Bayesian data analysis, London: Chapman & Hall.CrossRefGoogle Scholar
Gelman, A., & Rubin, D. B. (1992). Inference from Iterative Simulation Using Multiple Sequences (with discussion). Statistical Science, 7, 457511.CrossRefGoogle Scholar
Geman, S., & Geman, D. (1984). Stochastic relaxation, Gibbs distribution and the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6, 721741.CrossRefGoogle ScholarPubMed
Gilks, W. R., Richardson, S., & Spiegelhalter, D. J. (1996). Markov chain Monte Carlo in practice, London: Chapman and Hall.Google Scholar
Härdle, W. (1990). Applied nonparametric regression, Cambridge, MA: Cambridge University Press.CrossRefGoogle Scholar
Hastings, W. K. (1970). Monte Carlo sampling methods using Markov chains and their applications. Biometrika, 57, 97109.CrossRefGoogle Scholar
Hayduk, L. A. (1987). Structural equation modeling with LISREL: Essentials and advances, Baltimore, MD: Johns Hopkins Press.Google Scholar
Hobert, J. P., & Casella, G. (in press). The effect of improper priors on Gibbs sampling in hierarchical linear mixed models. Journal of the American Statistical Association.Google Scholar
Holling, H. (1995). Goal setting and performance, Germany: Universität Münster, Department of Psychology.Google Scholar
Jöreskog, K. G., & Sörbom, D. (1993). LISREL 8: Structural equation modeling with the SIMPLIS command language, Hillsdale, NJ: Lawrence Earlbaum Associates.Google Scholar
Jöreskog, K. G., & Yang, F. (1996). Nonlinear structural equation models: The Kenny-Judd model with interaction effects. In Marcoulides, G. A., & Schumacker, R. E. (Eds.), Advanced structural equation modeling techniques (pp. 5788). Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
Kenny, D., & Judd, C. M. (1984). Estimating the nonlinear and interactive effects of latent variables. Psychological Bulletin, 96, 201210.CrossRefGoogle Scholar
Lawley, D. N., & Maxwell, A. E. (1971). Factor analysis as a statistical method, London: Butterworth.Google Scholar
Lee, S. Y. (1991). A Bayesian Approach to Confirmatory Factor Analysis. Psychometrika, 46, 153160.CrossRefGoogle Scholar
Lindley, D. V., & Smith, A. F. M. (1972). Bayes estimates for the linear model (with discussion). Journal of the Royal Statistical Society, Series B, 34, 141.CrossRefGoogle Scholar
Loftsgaarden, D. O., & Quesenberry, G. P. (1965). A nonparametric estimate of a multivariate density function. Annals of Mathematical Statistics, 36, 10491051.CrossRefGoogle Scholar
MacEachern, S. N., & Berliner, M. L. (1994). Subsampling the Gibbs sampler. The American Statistican, 48, 188190.CrossRefGoogle Scholar
Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., & Teller, E. (1953). Equations of state calculations by fast computing machines. Journal of Chemical Physics, 21, 10871091.CrossRefGoogle Scholar
Müller, P. (1994). Metroplis Based Posterior Integration Schemes, Durham: Duke University.Google Scholar
Muthén, B. O. (1988). LISCOMP—Analysis of linear structural equations with a comprehensive measurement model, Mooresville: Scientific Software.Google Scholar
Press, S. J., & Shigemasu, K. (1989). Bayesian inference in factor analysis. In Gleser, L., Perlman, M. D., Press, S. J., & Sampson, A. R. (Eds.), Contributions to probability and statistics (pp. 271287). New York: Springer Verlag.CrossRefGoogle Scholar
Ritter, C., & Tanner, M. A. (1992). Facilitating the Gibbs sampler: The Gibbs stopper and the Griddy-Gibbs sampler. Journal of the American Statistical Association, 87, 861868.CrossRefGoogle Scholar
Rubin, D. B. (1991). EM and Beyond. Psychometrika, 56, 241254.CrossRefGoogle Scholar
Tanner, M. A. (1993). Tools for statistical inference 2nd ed.,, Heidelberg and New York: Springer Verlag.CrossRefGoogle Scholar
Tierney, L. (1994). Markov chains for exploring posterior distributions (with Discussion). Annals of Statistics, 22, 17011762.Google Scholar