Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-07T18:18:48.005Z Has data issue: false hasContentIssue false

B. Efron and R. J. Tibshirani (1993). An Introduction to the Bootstrap. New York: Chapman & Hall, xvi + 436 pp. ISBN 0-412-0423t-2, $50.00.

Review products

B. Efron and R. J. Tibshirani (1993). An Introduction to the Bootstrap. New York: Chapman & Hall, xvi + 436 pp. ISBN 0-412-0423t-2, $50.00.

Published online by Cambridge University Press:  01 January 2025

Monica Th. Markus*
Affiliation:
Leiden University
Patrick J. F. Groenen
Affiliation:
Leiden University
*
Requests for reprints should be sent to Monica Th. Markus, Department of Child and Adolescent Psychiatry Curium, Endegeesterstraatweg 27-31, 2342 Ak Oegstgeest, THE NETHERLANDS. E-mail: [email protected]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Book Review
Copyright
Copyright © 1998 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Efron, B. (1979). Bootstrap methods: Another look at the jackknife. The Annals of Statistics, 7, 126.CrossRefGoogle Scholar
Efron, B. (1979). Computers and the theory of statistics: Thinking the unthinkable. SIAM Review, 21, 460480.CrossRefGoogle Scholar
Efron, B. (1982). The jackknife, the bootstrap and other resampling plans. Volume 38 of CBMS-NSF Regional Conference Series in Applied Mathematics. SIAM..CrossRefGoogle Scholar
Greenacre, M. J.. (1984). Theory and applications of correspondence analysis, London: Academic Press.Google Scholar
Hall, P.. (1992). The bootstrap and Edgeworth expansion, New York: Springer Verlag.CrossRefGoogle Scholar
Heiser, W. J., Meulman, J. J. (1983). Constrained multidimensional scaling, including confirmation. Applied Psychological Measurement, 7, 381404.CrossRefGoogle Scholar
Markus, M. Th.. (1994). Bootstrap confidence regions in nonlinear multivariate analysis, Leiden: DSWO Press, Leiden University.Google Scholar
Noreen, E. W.. (1989). Computer intensive methods for testing hypotheses: An introduction, New York: Wiley.Google Scholar
Ringrose, T. J., Krzanowski, W. J. (1991). Simulation study of confidence regions for canonical variate analysis. Statistics and Computing, 1, 4146.CrossRefGoogle Scholar