Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-07T16:00:08.280Z Has data issue: false hasContentIssue false

An INAR(1) Negative Multinomial Regression Model for Longitudinal Count Data

Published online by Cambridge University Press:  01 January 2025

Ulf Böckenholt*
Affiliation:
University of Illinois at Urbana-Champaign
*
Requests for reprints should be sent to Ulf Böckenholt, University of Illinois at Urbana-Champaign, Department of Psychology, 603 East Daniel Street, Champaign, IL 61820.

Abstract

This paper discusses a regression model for the analysis of longitudinal count data observed in a panel study. An integer-valued first-order autoregressive [INAR(1)] Poisson process is adapted to represent time-dependent correlations among the counts. By combining the INAR(1)-representation with a random effects approach, a new negative multinomial distribution is derived that includes the bivariate negative binomial distribution proposed by Edwards and Gurland (1961) and Subrahmaniam (1966) as a special case. A detailed analysis of the relationship between personality factors and daily emotion experiences illustrates the approach.

Type
Original Paper
Copyright
Copyright © 1999 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

This research was partially supported by NSF grant SBR-9409531. The author is grateful to Ulrich Schimmack and Ed Diener for providing the data set used in the application section and for helpful comments on this research.

References

Al-Osh, M. A., & Alzaid, A. A. (1987). First-order integer valued autoregressive (INAR(1)) process. Journal of Time Series Analysis, 8, 261275.CrossRefGoogle Scholar
Bartlett, M. S. (1955). An introduction to stochastic processes, Cambridge: Cambridge University Press.Google Scholar
Bates, G. E., & Neyman, J. (1952). Contributions to the theory of accident proneness. University of California Publications in Statistics, 1, 215275.Google Scholar
Blundell, R., Griffith, R., & Windmeijer, F. (1995). Individual effects and dynamics in count data models, London: The Institute for Fiscal Studies.Google Scholar
Bolger, N., & Schilling, E. A. (1991). Personality and the problems of everyday life: The role of neuroticism in exposure and reactivity to daily stressors. Journal of Personality, 59, 355386.CrossRefGoogle ScholarPubMed
Brännäs, K. (1995). Explanatory variables in the AR(1) Poisson model, Umeå, Sweden: Umeå University, Department of Economics.Google Scholar
Cameron, A. C., & Trivedi, P. K. (1986). Econometric models based on count data: Comparisons and applications of some estimators and tests. Journal of Applied Econometrics, 1, 2953.CrossRefGoogle Scholar
Carroll, R. J., Ruppert, D., & Stefanski, L. A. (1995). Measurement Error in Nonlinear Models, London: Chapman & Hall.CrossRefGoogle Scholar
Chernoff, H. (1954). On the distribution of the likelihood ratio. The Annals of Mathematical Statistics, 25, 573578.CrossRefGoogle Scholar
Chi, E. M., & Reinsel, G. C. (1989). Models for longitudinal data with random effects and AR(1) errors. Journal of the American Statistical Association, 84, 452459.CrossRefGoogle Scholar
Costa, P. T. Jr., McCrae, R. R. (1985). The NEO personality inventory manual, Odessa: Psychological Assessment Resources.Google Scholar
Edwards, C. B., & Gurland, J. (1961). A class of distributions applied to accidents. Journal of the American Statistical Association, 56, 503517.CrossRefGoogle Scholar
Fürth, R. (1918). Statistik und Wahrscheinlichkeitsnachwirkung. Physik Zeitschrift, 19, 421426 [Statistics and the Probability of After-Effects]Google Scholar
Gauss, (1995). System and graphics manual. Version 3, Kent: Aptech Systems.Google Scholar
Gill, P. E., Murray, W., & Wright, M. H. (1981). Practical optimization, New York: Academic Press.Google Scholar
Goldstein, H., Healy, M. J. R., & Rasbash, J. (1994). Multilevel time series models with applications to repeated measures data. Statistics in Medicine, 13, 16431655.CrossRefGoogle ScholarPubMed
Greenwood, M., & Yule, G. U. (1920). An inquiry into the nature of frequency distribution representative of multiple happenings with particular reference to the occurrence of multiple attacks of disease or of repeated accidents. Journal of the Royal Statistical Society, 83, 255279.CrossRefGoogle Scholar
Hausman, J., Hall, B. H., & Griliches, Z. (1984). Econometric models for count data with an application to the Patents-R&D relationship. Econometrica, 52, 909938.CrossRefGoogle Scholar
Izard, C. E., Libero, D. Z., Putnam, P., & Haynes, O. M. (1993). Stability of emotion experiences and their relations to traits of personality. Journal of Personality and Social Psychology, 64, 847860.CrossRefGoogle ScholarPubMed
Lawless, J. F. (1987). Negative binomial and mixed Poisson regression. The Canadian Journal of Statistics, 15, 2090225.CrossRefGoogle Scholar
Liang, K. Y., & Zeger, S. L. (1986). Longitudinal data analysis using generalized linear models. Biometrika, 73, 1322.CrossRefGoogle Scholar
Marco, C. A., & Suls, J. (1993). Daily stress and the trajectory of mood: Spillover, response assimilation, contrast, and chronic affectivity. Journal of the Personality and Social Psychology, 64, 10531063.CrossRefGoogle ScholarPubMed
McCullagh, P., & Nelder, J. A. (1989). Generalized Linear Models, London: Chapman & Hall.CrossRefGoogle Scholar
McKenzie, E. (1988). Some ARMA models for dependent sequences of Poisson counts. Advances in Applied Probability, 20, 822835.CrossRefGoogle Scholar
Nelson, J. F. (1985). Multivariate gamma-Poisson models. Journal of the American Statistical Association, 80, 828834.CrossRefGoogle Scholar
Ronning, G., & Jung, R. C. (1992). Estimation of a first-order autoregressive process with Poisson marginals for count data. In Fahrmeir, L., Francis, B., Gilchrist, R., & Tutz, G. (Eds.), Advances in GLIM and statistical modeling (pp. 199–194). Berlin: Springer Verlag.Google Scholar
Schimmack, U. (1996). A diary study about emotion experiences. Unpublished data set. University of Illinois at Urbana-Champaign.Google Scholar
Steutel, F. W., & van Harn, K. (1979). Discrete analogues of self-decomposability and stability. Annals of Probability, 7, 893899.CrossRefGoogle Scholar
Stukel, T. A. (1993). Comparison of methods for the analysis of longitudinal interval count data. Statistics in Medicine, 12, 13391351.CrossRefGoogle ScholarPubMed
Subrahmaniam, K. (1966). A test for “intrinsic correlation” in the theory of accident proneness. Journal of the Royal Statistical Society, Series B, 28, 180189.CrossRefGoogle Scholar
Subrahmaniam, K., & Subrahmaniam, K. (1973). On the estimation of the parameters in the bivariate negative binomial distribution. Journal of the Royal Statistical Society, Series B, 35, 131146.CrossRefGoogle Scholar
Tennen, H., Stuls, J., & Affleck, G. (1991). Personality and daily experience: The promise and the challenge. Journal of Personality, 59, 314337.CrossRefGoogle Scholar
Thall, P. F. (1988). Mixed Poisson likelihood regression models for longitudinal count data. Biometrics, 44, 197209.CrossRefGoogle Scholar
Thall, P. F., & Vail, S. C. (1990). Some covariance models for longitudinal count data with overdispersion. Biometrics, 46, 657672.CrossRefGoogle ScholarPubMed
van Duijn, M. A. J., & Böckenholt, U. (1995). Mixture models for the analysis of repeated count data. Applied Statistics, 44, 473485.CrossRefGoogle Scholar
Watson, D., & Clark, L. A. (1992). On traits and temperament: General and specific factors of emotional experience and their relation to the five-factor model. Journal of Personality, 60, 441476.CrossRefGoogle ScholarPubMed
West, S. G., & Hepworth, J. T. (1991). Statistical issues in the study of temporal data: Daily experiences. Journal of Personality, 59, 609662.CrossRefGoogle Scholar
Zeger, S. L., & Qaqish, B. (1988). Markov regression models for time series: A quasi-likelihood approach. Biometrics, 44, 10191031.CrossRefGoogle ScholarPubMed