Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-07T10:10:21.816Z Has data issue: false hasContentIssue false

Alpha, FACTT, and Beyond

Published online by Cambridge University Press:  01 January 2025

Peter M. Bentler*
Affiliation:
University of California, Los Angeles
*
Correspondence should be made to Peter M. Bentler, University of California, Los Angeles, Psychology Building 1285, Box 951563, Los Angeles, CA 90095-1563, USA. Email: [email protected]

Abstract

Sijtsma and Pfadt (Psychometrika, 2021) provide a wide-ranging defense for the use of coefficient alpha. Alpha is practical and useful when its limitations are acceptable. This paper discusses several methodologies for reliability, some new here, that go beyond alpha and were not emphasized by Sijtsma and Pfadt. Bentler’s (Psychometrika 33:335–345, 1968. https://doi.org/10.1007/BF02289328) combined factor analysis (FA) and classical test theory (CTT) model. FACTT provides a key conceptual foundation.

Type
Revisiting Cronbach’s Alpha
Copyright
Copyright © 2021 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arruda, E. H., & Bentler, P. M. (2017).A regularized GLS for structural equation modeling Structural Equation Modeling, 24, 657665. CrossRefGoogle Scholar
Bentler, P. M. (1968).Alpha-maximized factor analysis (Alphamax): Its relation to alpha and canonical factor analysis Psychometrika, 33, 335345 CrossRefGoogle ScholarPubMed
Bentler, P. M. (1972).A lower-bound method for the dimension-free measurement of internal consistency Social Science Research, 1, 343357. CrossRefGoogle Scholar
Bentler, P. M. (2007). Covariance structure models for maximal reliability of unit-weighted composites. In Lee, S.-Y. (Ed.), Handbook of latent variable and related models (pp. 1–19). North-Holland.Google Scholar
Bentler, P. M. (2009).Alpha, dimension-free, and model-based internal consistency reliability Psychometrika, 74, 137143 CrossRefGoogle ScholarPubMed
Bentler, P. M. (2016).Covariate-free and covariate-dependent reliability Psychometrika, 81, 907920 CrossRefGoogle ScholarPubMed
Bentler, P. M. (2017).Specificity-enhanced reliability coefficients Psychological Methods, 22, 527540 CrossRefGoogle ScholarPubMed
Bentler, P. M., & Bonett, D. G. (1980).Significance tests and goodness of fit in the analysis of covariance structures Psychological Bulletin, 88, 588606. CrossRefGoogle Scholar
Bentler, P. M., & Weeks, D. G. (1980).Linear structural equations with latent variables Psychometrika, 45, 289308. CrossRefGoogle Scholar
Bentler, P. M., & Woodward, J. A. (1980).Inequalities among lower bounds to reliability: With applications to test construction and factor analysis Psychometrika, 45, 249267. CrossRefGoogle Scholar
Bentler, P. M., & Woodward, J. A. (1983). The greatest lower bound to reliability. In Wainer, H., & Messick, S. (Eds.), Principals of modern psychological measurement: A Festschrift for Frederic M. Lord (pp. 237–253). Erlbaum.Google Scholar
Bentler, P. M., & Woodward, J. A. (1985).On the greatest lower bound to reliability Psychometrika, 50, 245246. CrossRefGoogle Scholar
Cronbach, L. J. (1951).Coefficient alpha and the internal structure of tests Psychometrika, 16, 297334. CrossRefGoogle Scholar
Cronbach, L. J., & Gleser, G. C. (1964).The signal/noise ratio in the comparison of reliability coefficients Educational and Psychological Measurement, 24, 467480. CrossRefGoogle Scholar
Du, H., & Bentler, P. M. Distributionally weighted least squares in structural equation modeling. Psychological Methods, (2021 Google ScholarPubMed
Guttman, L. A. (1945).A basis for analyzing test-retest reliability Psychometrika, 10, 255282 CrossRefGoogle ScholarPubMed
Heise, D. R., & Bohrnstedt, G. W. (1970). Validity, invalidity, and reliability. In Borgatta, E. F., &Bohrnstedt, G. W. (Eds.), Sociological methodology (pp. 104–129). Jossey-Bass.CrossRefGoogle Scholar
Hunt, T. D., & Bentler, P. M. (2015).Quantile lower bounds to reliability based on locally optimal splits Psychometrika, 80, 182195 CrossRefGoogle ScholarPubMed
Jackson, P. H., & Agunwamba, C. C. (1977).Lower bounds for the reliability of total scores on a test composed of nonhomogeneous items: I. Algebraic lower bounds Psychometrika, 42, 567578. CrossRefGoogle Scholar
Jalal, S, & Bentler, P. M. (2018).Using Monte Carlo normal distributions to evaluate structural models with nonnormal data Structural Equation Modeling, 25, 541557. CrossRefGoogle Scholar
Jöreskog, K. G. (1969).A general approach to confirmatory maximum likelihood factor analysis Psychometrika, 34, 183202. CrossRefGoogle Scholar
Jöreskog, K. G. (1971).Statistical analysis of sets of congeneric tests Psychometrika, 36, 109133. CrossRefGoogle Scholar
Kim, D. S., Reise, S. P., & Bentler, P. M. (2018).Identifying aberrant data in structural equation models with IRLS-ADF Structural Equation Modeling, 25, 343358. CrossRefGoogle Scholar
Li, L., & Bentler, P. M. (2011).The greatest lower bound to reliability: Corrected and resampling estimators Modelling and Data Analysis, 1, 87104. Google Scholar
Lord, F. M., & Novick, M. R. (1968). Statistical theories of mental test scores. Addison-Wesley.Google Scholar
McCrae, R. R. (2015).A more nuanced view of reliability: Specificity in the trait hierarchy Personality and Social Psychology Review, 19, 97112 CrossRefGoogle ScholarPubMed
McDonald, R. P. (1970).The theoretical foundations of principal factor analysis, canonical factor analysis, and alpha factor analysis British Journal of Mathematical and Statistical Psychology, 23, 121. CrossRefGoogle Scholar
McDonald, R. P. (1999). Test theory: A unified treatment. Erlbaum.Google Scholar
Raykov, T (2007).Reliability of multiple-component measuring instruments: Improved evaluation in repeated measure designs The British Journal of Mathematical and Statistical Psychology, 60, 119136 CrossRefGoogle ScholarPubMed
Raykov, T., & Tisak, J. (2004).Examining time-invariance in reliability in multi-wave, multi-indicator models: A covariance structure analysis approach accounting for indicator specificity The British Journal of Mathematical and Statistical Psychology, 57, 253263 CrossRefGoogle ScholarPubMed
Shapiro, A., & ten Berge, J. M. F. (2000).The asymptotic bias of minimum trace factor analysis, with applications to the greatest lower bound to reliability Psychometrika, 65, 413425. CrossRefGoogle Scholar
Sijtsma, K., & Pfadt, J. (2021). Part II: On the use, the misuse, and the very limited usefulness of Cronbach’s alpha: Discussing lower bounds and correlated errors. Psychometrika.CrossRefGoogle Scholar
ten Berge, J. M. F., Snijders, T. A. B., & Zegers, F. E. (1981).Computational aspects of the greatest lower bound to the reliability and constrained minimum trace factor analysis Psychometrika, 46, 201213. CrossRefGoogle Scholar
Wilkinson, L., & APA Task Force on Statistical Inference. (1999). Statistical methods in psychology journals: Guidelines and explanations. American Psychologist, 54, 594–604. https://doi.org/10.1037/0003-066X.54.8.594.CrossRefGoogle Scholar
Woodhouse, B., & Jackson, P. M. (1977).Lower bounds for the reliability of the total score on a test composed of nonhomogeneous items: II. A search procedure to locate the greatest lower bound Psychometrika, 42, 579591. CrossRefGoogle Scholar
Woodward, J. A., & Bentler, P. M. (1978).A statistical lower-bound to population reliability Psychological Bulletin, 85, 13231326 CrossRefGoogle ScholarPubMed
Yuan, K.-H, & Bentler, P. M. (2017).Improving the convergence rate and speed of Fisher-scoring algorithm: Ridge and anti-ridge methods in structural equation modeling Annals of the Institute of Statistical Mathematics, 69, 571597. CrossRefGoogle Scholar