Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-07T18:05:19.831Z Has data issue: false hasContentIssue false

Generic Identifiability of the DINA Model and Blessing of Latent Dependence

Published online by Cambridge University Press:  01 January 2025

Yuqi Gu*
Affiliation:
Columbia University
*
Correspondence should be made to Yuqi Gu, Department of Statistics, Columbia University, Room 928 SSW, 1255 Amsterdam Avenue, New York, NY 10027, USA. Email: [email protected]

Abstract

Cognitive diagnostic models are a powerful family of fine-grained discrete latent variable models in psychometrics. Within this family, the DINA model is a fundamental and parsimonious one that has received significant attention. Similar to other complex latent variable models, identifiability is an important issue for CDMs, including the DINA model. Gu and Xu (Psychometrika 84(2):468–483, 2019) established the necessary and sufficient conditions for strict identifiability of the DINA model. Despite being the strongest possible notion of identifiability, strict identifiability may impose overly stringent requirements on designing the cognitive diagnostic tests. This work studies a slightly weaker yet very useful notion, generic identifiability, which means parameters are identifiable almost everywhere in the parameter space, excluding only a negligible subset of measure zero. We propose transparent generic identifiability conditions for the DINA model, relaxing existing conditions in nontrivial ways. Under generic identifiability, we also explicitly characterize the forms of the measure-zero sets where identifiability breaks down. In addition, we reveal an interesting blessing-of-latent-dependence phenomenon under DINA—that is, dependence between the latent attributes can restore identifiability under some otherwise unidentifiable Q\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$${\mathbf {Q}}$$\end{document}-matrix designs. The blessing of latent dependence provides useful practical implications and reassurance for real-world designs of cognitive diagnostic assessments.

Type
Theory and Methods
Copyright
Copyright © 2022 The Author(s) under exclusive licence to The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/S0033312300006049.

References

Allman, E. S., Matias, C., Rhodes, J. A., (2009). Identifiability of parameters in latent structure models with many observed variables The Annals of Statistics 37 6A 30993132 10.1214/09-AOS689CrossRefGoogle Scholar
Balamuta, J. J., Culpepper, S. A., (2022). Exploratory restricted latent class models with monotonicity requirements under PÒLYA-GAMMA data augmentation Psychometrika 66 143Google Scholar
Chen, Y., Culpepper, S. A., Chen, Y., Douglas, J., (2018). Bayesian estimation of the DINA Q matrix Psychometrika 83(1) 89108 10.1007/s11336-017-9579-4 28861685CrossRefGoogle ScholarPubMed
Chen, Y., Culpepper, S. A., Liang, F., (2020). A sparse latent class model for cognitive diagnosis Psychometrika 85(1) 121153 10.1007/s11336-019-09693-2 31927684CrossRefGoogle ScholarPubMed
Chen, Y., Liu, Y., Culpepper, S. A., Chen, Y., (2021). Inferring the number of attributes for the exploratory DINA model Psychometrika 86(1) 3064 10.1007/s11336-021-09750-9 33751367CrossRefGoogle ScholarPubMed
Chiu, C-Y Douglas, J. A., Li, X., (2009). Cluster analysis for cognitive diagnosis: Theory and applications Psychometrika 74(4) 633665 10.1007/s11336-009-9125-0CrossRefGoogle Scholar
Culpepper, S. A., (2015). Bayesian estimation of the DINA model with Gibbs sampling Journal of Educational and Behavioral Statistics 40(5) 454476 10.3102/1076998615595403CrossRefGoogle Scholar
Culpepper, S. A., (2019). An exploratory diagnostic model for ordinal responses with binary attributes: Identifiability and estimation Psychometrika 84(4) 921940 10.1007/s11336-019-09683-4 31432312CrossRefGoogle ScholarPubMed
de la Torre, J., (2009). DINA model and parameter estimation: A didactic Journal of Educational and Behavioral Statistics 34(1) 115130 10.3102/1076998607309474CrossRefGoogle Scholar
de la Torre, J., (2011). The generalized DINA model framework Psychometrika 76 179199 10.1007/s11336-011-9207-7CrossRefGoogle Scholar
DeCarlo, L. T., (2011). On the analysis of fraction subtraction data: The DINA model, classification, latent class sizes, and the Q-matrix Applied Psychological Measurement 35(1) 826 10.1177/0146621610377081CrossRefGoogle Scholar
Fang, G., Liu, J., Ying, Z., (2019). On the identifiability of diagnostic classification models Psychometrika 84(1) 1940 10.1007/s11336-018-09658-x 30673967CrossRefGoogle ScholarPubMed
Gu, Y., Xu, G., (2019). The sufficient and necessary condition for the identifiability and estimability of the DINA model Psychometrika 84(2) 468483 10.1007/s11336-018-9619-8 29728918CrossRefGoogle ScholarPubMed
Gu, Y., Xu, G., (2020). Partial identifiability of restricted latent class models Annals of Statistics 48(4) 20822107 10.1214/19-AOS1878CrossRefGoogle Scholar
Gu, Y., Xu, G., Sufficient and necessary conditions for the identifiability of the Q \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$Q$$\end{document} -matrix Statistica Sinica 31 449472Google Scholar
Gu, Y., Xu, G., (2021). Identifiability of hierarchical latent attribute models Statistica Sinica (2022). 6 66Google Scholar
Henson, R. A., Templin, J. L., Willse, J. T., (2009). Defining a family of cognitive diagnosis models using log-linear models with latent variables Psychometrika 74 191210 10.1007/s11336-008-9089-5CrossRefGoogle Scholar
Junker, B. W., Sijtsma, K., (2001). Cognitive assessment models with few assumptions, and connections with nonparametric item response theory Applied Psychological Measurement 25 258272 10.1177/01466210122032064CrossRefGoogle Scholar
Kern, J. L., Culpepper, S. A., (2020). A restricted four-parameter IRT model: The Dyad four-parameter Normal Ogive (Dyad-4PNO) model Psychometrika 85(3) 575599 10.1007/s11336-020-09716-3 32803390CrossRefGoogle ScholarPubMed
Kruskal, J. B., (1977). Three-way arrays: Rank and uniqueness of trilinear decompositions, with application to arithmetic complexity and statistics Linear Algebra and its Applications 18(2) 95138 10.1016/0024-3795(77)90069-6CrossRefGoogle Scholar
Liu, C-W Andersson, B., Skrondal, A., (2020). A constrained Metropolis–Hastings Robbins–Monro algorithm for Q matrix estimation in DINA models Psychometrika 85(2) 322357 10.1007/s11336-020-09707-4 32632838CrossRefGoogle ScholarPubMed
Maris, E., (1999). Estimating multiple classification latent class models Psychometrika 64(2) 187212 10.1007/BF02294535CrossRefGoogle Scholar
Rupp, A. A., & Templin, J. (2008a). The effects of Q-matrix misspecification on parameter estimates and classification accuracy in the DINA model. Educational and Psychological Measurement, 68(1), 78–96.CrossRefGoogle Scholar
Rupp, A. A., & Templin, J. L. (2008b). Unique characteristics of diagnostic classification models: A comprehensive review of the current state-of-the-art. Measurement, 6(4), 219–262.CrossRefGoogle Scholar
Tatsuoka, K. K., (1983). Rule space: An approach for dealing with misconceptions based on item response theory Journal of Educational Measurement 20 345354 10.1111/j.1745-3984.1983.tb00212.xCrossRefGoogle Scholar
Templin, J., Bradshaw, L., (2014). Hierarchical diagnostic classification models: A family of models for estimating and testing attribute hierarchies Psychometrika 79(2) 317339 10.1007/s11336-013-9362-0 24478021CrossRefGoogle ScholarPubMed
von Davier, M., (2008). A general diagnostic model applied to language testing data British Journal of Mathematical and Statistical Psychology 61 287307 10.1348/000711007X193957CrossRefGoogle ScholarPubMed
von Davier, M., Lee, Y-S Handbook of diagnostic classification models Cham Springer 10.1007/978-3-030-05584-4CrossRefGoogle Scholar
Xu, G., (2019). Identifiability of restricted latent class models with binary responses Annals of Statistics (2017). 45 675707 10.1214/16-AOS1464Google Scholar
Xu, G., Zhang, S., (2016). Identifiability of diagnostic classification models Psychometrika 81(3) 625649 10.1007/s11336-015-9471-z 26155755CrossRefGoogle ScholarPubMed
Yamaguchi, K., Okada, K., (2020). Variational Bayes inference for the DINA model Journal of Educational and Behavioral Statistics 45(5) 569597 10.3102/1076998620911934CrossRefGoogle Scholar
Supplementary material: File

Gu supplementary material

Gu supplementary material
Download Gu supplementary material(File)
File 308.3 KB