Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-07T18:43:41.077Z Has data issue: false hasContentIssue false

Frequentist Model Averaging in Structural Equation Modelling

Published online by Cambridge University Press:  01 January 2025

Shaobo Jin*
Affiliation:
Uppsala University
Sebastian Ankargren
Affiliation:
Uppsala University
*
Correspondence should be made to Shaobo Jin, Department of Statistics, Uppsala University, Uppsala, Sweden. Email: [email protected]

Abstract

Model selection from a set of candidate models plays an important role in many structural equation modelling applications. However, traditional model selection methods introduce extra randomness that is not accounted for by post-model selection inference. In the current study, we propose a model averaging technique within the frequentist statistical framework. Instead of selecting an optimal model, the contributions of all candidate models are acknowledged. Valid confidence intervals and a χ2\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\chi ^2$$\end{document} test statistic are proposed. A simulation study shows that the proposed method is able to produce a robust mean-squared error, a better coverage probability, and a better goodness-of-fit test compared to model selection. It is an interesting compromise between model selection and the full model.

Type
Original Paper
Copyright
Copyright © 2018 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Electronic supplementary material The online version of this article (https://doi.org/10.1007/s11336-018-9624-y) contains supplementary material, which is available to authorized users.

References

Akaike, H., Petrov, B. N. & Csaki, F. (1973). Information theory as an extension of the maximum likelihood principle. Second international symposium on information theory. Budapest: Akademiai Kiado. Google Scholar
Ankargren, S., & Jin, S. (2018). On the least squares model averaging interval estimator. Communications in Statistics: Theory and Methods, 47, 118132. CrossRefGoogle Scholar
Bentler, P. M. (1990). Comparative fit indexes in structural models. Psychological Bulletin, 107, 238246. 10.1037/0033-2909.107.2.238 CrossRefGoogle ScholarPubMed
Berk, R., Brown, L., Buja, A., Zhang, K., & Zhao, L. (2013). Valid post-selection inference. Annals of Statistics, 41, 802837. 10.1214/12-AOS1077 CrossRefGoogle Scholar
Browne, M. W., Aigner, D. J. & Goldberger, A. S.. ((1974)). Generalized least squares estimators in the analysis of covariance structures. South African Statistical Journal, Latent variables insocioeconomic models (pp. 205–226). Amsterdam: North Holland. 8, 124. Google Scholar
Browne, M. W. (1984). Asymptotically distribution-free methods in the analysis of covariance structures. British Journal of Mathematical and Statistical Psychology, 37, 6283. CrossRefGoogle ScholarPubMed
Browne, M. W. (1987). Robustness of statistical inference in factor analysis and related models. Biometrika, 74, 375384. 10.1093/biomet/74.2.375 CrossRefGoogle Scholar
Browne, M. W. & Cudeck, R. Bollen, K. A. & Long, J. S. (1993). Alternative ways of assessing model fit. Testing structural equation models. 136161. Newbury Park: Sage. Google Scholar
Buckland, S. T., Burnham, K. P. K. P. & Augustin, H. (1997). Model selection: An integral part of inference. Biometrics, 53, 603618. 10.2307/2533961 CrossRefGoogle Scholar
Burnham, K. P., & Anderson, D. R. (2004). Multimodel inference understanding AIC and BIC in model selection. Sociological Methods & Research, 33, 261304. 10.1177/0049124104268644 CrossRefGoogle Scholar
Charkhi, A., Claeskens, G., & Hansen, B. E. (2016). Minimum mean square error model averaging in likelihood models. Statistica Sinica, 26, 809840. Google Scholar
Fletcher, D., & Dillingham, P. W. (2011). Model-averaged confidence intervals for factorial experiments. Computational Statistics & Data Analysis, 55, 30413048. 10.1016/j.csda.2011.05.014 CrossRefGoogle Scholar
Fletcher, D., & Turek, D. (2011). Model-averaged profile likelihood intervals, Journal of Agricultural, Biological and Environmental Statistics, 17. 3851. 10.1007/s13253-011-0064-8 CrossRefGoogle Scholar
Hansen, B. E. (2007). Least squares model averaging. Econometrica, 75. 11751189. 10.1111/j.1468-0262.2007.00785.x CrossRefGoogle Scholar
Hansen, B. E. (2014). Model averaging, asymptotic risk, and regression groups. Quantitative Economics, 5, 495530. 10.3982/QE332 CrossRefGoogle Scholar
Hansen, B. E., & Racine, J.S. (2012). Jackknife model averaging. Journal of Econometrics, 167, 3846. 10.1016/j.jeconom.2011.06.019 CrossRefGoogle Scholar
Hjort, N. L., & Claeskens, G. (2003a). Frequentist model average estimators. Journal of the American Statistical Association, 98, 879899. 10.1198/016214503000000828 CrossRefGoogle Scholar
Hjort, N. L., & Claeskens, G. (2003b). Rejoinder. Journal of the American Statistical Association, 98, 938945. 10.1198/016214503000000882 CrossRefGoogle Scholar
Hoeting, J. A., Madigan, D., Raftery, A. E., & Volinsky, C. T. (1999). Bayesian model averaging: A tutorial (with discussion). Statistical Science, 14, 382417. 10.1214/ss/1009212519 Google Scholar
Ishwaran, H., & Rao, J. S. (2003). Discussion. Journal of the American Statistical Association, 98, 922925. 10.1198/0162214503000000855 CrossRefGoogle Scholar
Kabaila, P. (1995). The effect of model selection on confidence regions and prediction regions. Econometric Theory, 11, 537549. 10.1017/S0266466600009403 CrossRefGoogle Scholar
Kabaila, P., & Leeb, H. (2006). On the large-sample minimal coverage probability of confidence intervals after model selection. Journal of the American Statistical Association, 101, 619629. 10.1198/016214505000001140 CrossRefGoogle Scholar
Kabaila, P., Welsh, A. H., & Abeysekera, W. (2016). Model-averaged confidence intervals. Scandinavian Journal of Statistics, 43, 3548. 10.1111/sjos.12163 CrossRefGoogle Scholar
Karatzoglou, A., Smola, A., Hornik, K., & Zeileis, A. (2004). kernlab—An S4 package for kernel methods in R. Journal of Statistical Software, 11, 120. 10.18637/jss.v011.i09 CrossRefGoogle Scholar
Kember, D., & Leung, D. Y. P. (2009). Development of a questionnaire for assessing students’ perceptions of the teaching and learning environment and its use in quality assurance. Learning Environments Research, 12, 1529. 10.1007/s10984-008-9050-7 CrossRefGoogle Scholar
Kember, D., & Leung, D. Y. P. (2011). Disciplinary differences in student rating of teaching quality. Research in Higher Education, 52, 278299. 10.1007/s11162-010-9194-z CrossRefGoogle Scholar
Kim, J., & Pollard, D. (1990). Cube root asymptotics. The Annals of Statistics, 18, 191219. 10.1214/aos/1176347498 CrossRefGoogle Scholar
Knight, K., & Fu, W. (2000). Aasymptotic for lasso-type estimators. The Annals of Statistics, 28, 13561378. 10.1214/aos/1015957397 Google Scholar
Lee, W. W. S., Leung, D. Y. P., & Lo, K. C. H. Khine, M. S. (2013). Development of generic capabilities in teaching and learning eenvironment at associate degree level. Application of structural equation modeling in educational research and practice 169184. Rotterdam: Sense Publishers. 10.1007/978-94-6209-332-4_8 CrossRefGoogle Scholar
Leeb, H., & Pötscher, B. M. (2005). Model selection and inference: Facts and fiction. Econometric Theory, 21, 2159. CrossRefGoogle Scholar
Liu, C. -A. (2015). Distribution theory of the least squares averaging estimator. Journal of Econometrics, 186, 142159. 10.1016/j.jeconom.2014.07.002 CrossRefGoogle Scholar
Liu, C. -A., & Kuo, B. -S. (2016). Model averaging in predictive regressions. The Econometrics Journal, 19, 203231. 10.1111/ectj.12063 CrossRefGoogle Scholar
Liu, Q., & Okui, R. (2013). Heteroscedasticity-robust C p \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_p$$\end{document} model averaging. The Econometrics Journal, 16, 463472. 10.1111/ectj.12009 CrossRefGoogle Scholar
MacCallum, R. C. (1986). Specification searches in covariance structure modeling. Quantittative Methods in Psychology, 100, 107120. Google Scholar
MacCallum, R. C., Roznowski, M., & Necowitz, L. B. (1992). Model modifications in covariance structure analysis: The problem of capitalization on chance. Quantittative Methods in Psychology, 111, 490504. Google ScholarPubMed
Madigan, D., & Raftery, A. E. (1994). Model selection and accounting for model uncertainty in graphical models using Occam’s window. Journal of the American Statistical Association, 89, 15351546. CrossRefGoogle Scholar
Magnus, J. R., & Neudecker, H. (1986). Symmetry, 0–1 matrices and Jacobians: A review. Econometric Theory, 2, 157190. CrossRefGoogle Scholar
Muthén, B. (1978). Contributions to factor analysis of dichotomous variables. Psychometrika, 43, 551560. CrossRefGoogle Scholar
Muthén, B., du Toit, S. H. C., & Spisic, D. (1997). Robust inference using weighted least squares and quadratic estimating equations in latent variable modeling with categorical and continuous outcomes. https://www.statmodel.com/download/Article_075.pdf Retrieved from. Accessed 12 Sept 2013. Google Scholar
Pötscher, B. M. (1991). Effects of model selection on inference. Econometric Theory, 7, 163185. CrossRefGoogle Scholar
Raftery, A. E., & Zheng, Y. (2003). Discussion: Performance of Bayesian model averaging. Journal of the American Statistical Association, 98, 931938. CrossRefGoogle Scholar
Sarris, W. E., Satorra, A., & Sorbom, D. (1987). The detection and correction of specification errors in structural equation models. Sociological Methodology, 17, 105129. 10.2307/271030 CrossRefGoogle Scholar
Schomaker, M., & Heumann, C. (2011). Model averaging in factor analysis: An analysis of Olympic decathlon data. Journal of Quantitative Analysis in Sports, 7, Article 4. CrossRefGoogle Scholar
Schwarz, G. (1978). Estimating the dimension of a model. Annals of Statistics, 6, 461464. CrossRefGoogle Scholar
Sörbom, D. (1989). Model modification. Psychometrika, 54, 371384. CrossRefGoogle Scholar
Tucker, L. R., & Lewis, C. (1973). A reliability coefficient for maximum likelihood factor analysis. Psychometrika, 38, 110. CrossRefGoogle Scholar
Turek, D., & Fletcher, D. (2012). Model-averaged Wald confidence intervals. Computational Statistics & Data Analysis, 56, 28092815. CrossRefGoogle Scholar
Turlach, B. A., & Weingessel, A. (2013). quadprog: Functions to solve quadratic programming problems. R package version 1.5-5. Google Scholar
Vanderbei, R. J. (1999). LOQO: An interior point code for quadratic programming. Optimization Methods and Software, 11, 451484. CrossRefGoogle Scholar
Wang, H., & Zhou, S. Z. F. (2013). Interval estimation by frequentist model averaging. Communications in Statistics: Theory and Methods, 42, 43424356. CrossRefGoogle Scholar
Supplementary material: File

Jin and Ankargren supplementary material

Jin and Ankargren supplementary material
Download Jin and  Ankargren supplementary material(File)
File 38.4 KB