Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-07T18:40:53.309Z Has data issue: false hasContentIssue false

A Doubly Latent Space Joint Model for Local Item and Person Dependence in the Analysis of Item Response Data

Published online by Cambridge University Press:  01 January 2025

Ick Hoon Jin*
Affiliation:
University of Notre Dame
Minjeong Jeon
Affiliation:
University of California, Los Angeles
*
Correspondence should be made to Ick Hoon Jin, Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, IN, USA . Email: [email protected]

Abstract

Item response theory (IRT) is one of the most widely utilized tools for item response analysis; however, local item and person independence, which is a critical assumption for IRT, is often violated in real testing situations. In this article, we propose a new type of analytical approach for item response data that does not require standard local independence assumptions. By adapting a latent space joint modeling approach, our proposed model can estimate pairwise distances to represent the item and person dependence structures, from which item and person clusters in latent spaces can be identified. We provide an empirical data analysis to illustrate an application of the proposed method. A simulation study is provided to evaluate the performance of the proposed method in comparison with existing methods.

Type
Original Paper
Copyright
Copyright © 2018 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Electronic supplementary material The online version of this article (https://doi.org/10.1007/s11336-018-9630-0) contains supplementary material, which is available to authorized users.

Both Ick Hoon Jin and Minjeong Jeon are first authors.

References

Bishop, Y., Fienberg, S., & Holland, P. (1975). Discrete multivariate analysis. Cambridge: MIT Press. Google Scholar
Borg, I., & Groenen, P. J. F. (2005). Modern multidimensional scaling: Theory and applications. (2). New York, NY: Springer. Google Scholar
Byrnes, JP., & Overton, W. F. (1986). Reasoning about certainty and uncertainty in concrete, causal, and propositional context. Developmental Psychology, 22, 793799 CrossRefGoogle Scholar
Chalmers, R. P. (2012). mirt: A multidimensional item response theory package for the R environment. Journal of Statistical Software, 48, 129. CrossRefGoogle Scholar
Chen, W. -H., & Thissen, D. (1997). Local dependence indexes for item pairs using item response theory. Journal of Educational and Behavioral Statistics, 22, 265289. CrossRefGoogle Scholar
De Ayala, R. J., & Hertzog, M. A. (1991). The assessment of unidimensionality for use in item response theory. Multivariate Behavioral Research, 26, 765792. CrossRefGoogle Scholar
Draney, K. (2007). The Saltus model applied to proportional reasoning data. Journal of Applied Measurement, 8, 438455. Google ScholarPubMed
Draney, K., Wilson, M., Gluck, J., & Spiel, C., Hancock, R. & Samuelson, K. M. (2007). Mixture models in a developmental context. Latent variable mixture models (199216). Charlotte, NC: Information Age. Google Scholar
Epskamp, S., Borsboom, D., & Fried, E. I. (2018). Estimating psychological networks and their accuracy: A tutorial paper. Behavior Research Methods, 50, 195212. CrossRefGoogle ScholarPubMed
Evans, J. S. B. T., Newstead, S. E., & Byrne, R. M. J. (1993). Human reasoning: The psychology of deduction, Mahwah, NJ: Erlbaum. Google Scholar
Fox, J., & Glas, C. A. Bayesian estimation of a multilevel IRT model using Gibbs sampling. (2001). Psychometrika, 66, 271288. 10.1007/BF02294839 CrossRefGoogle Scholar
Friel, N., Rastelli, R., Wyse, J., & Raftery, A. E. (2016). Interlocking directorates in Irish companies using a latent space model for bipartite networks. Proceedings of the National Academy of Sciences of the United States of America, 113, 66296634. CrossRefGoogle ScholarPubMed
Glas, C. A., & Suarez-Falcon, J. C. (2003). A comparison of item-fit statistics for the three parameter logistic model. Applied Psychological Measurement, 27, 87106. 10.1177/0146621602250530 CrossRefGoogle Scholar
Gollini, I., & Murphy, T. B. (2014). Mixture of latent trait analyzers for model-based clustering of categorical data. Statistics and Computing, 24, 569588. CrossRefGoogle Scholar
Gollini, I., & Murphy, T. B. (2016). Joint modeling of multiple network views. Journal of Computational and Graphical Statistics, 25, 246265. CrossRefGoogle Scholar
Handcock, M. S., Raftery, A. E., & Tantrum, J. M. (2007). Model-based clustering for social network. Journal of the Royal Statistical Society, Series A, 170, 301354. CrossRefGoogle Scholar
Hechenbichler, K ., & Schliep, K . (2004). Weighted k-nearest-neighbor techniques and ordinal classification. Technical Report 399, Ludwig-Maximilians University, Munich.Google Scholar
Hoff, P., Raftery, A., & Handcock, M. S. (2002). Latent space approaches to social network analysis. Journal of the American Statistical Association, 97, 10901098. 10.1198/016214502388618906 CrossRefGoogle Scholar
Janveau-Brennan, G., & Markovits, H. (1999). The development of reasoning with causal conditionals. Developmental Psychology, 35, 904911. CrossRefGoogle ScholarPubMed
Kamata, A., Bauer, D. J. (2008). A note on the relation between factor analytic and item response theory models. Structural Equation Modeling, 15, 136153. CrossRefGoogle Scholar
Krivitsky, P. N., Handcock, M. S., Raftery, A. E., & Hoff, P. D. (2009). Representing degree distributions, clustering, and homophily in social networks with latent cluster random network models. Social Networks, 31, 204213. CrossRefGoogle Scholar
Kruis, J., & Maris, G. (2016). Three representations of the ising model. Scientific Reports, 6, (34175), 111. CrossRefGoogle ScholarPubMed
Liu, Y., & Maydeu-Olivares, A. (2012). Local dependence diagnostics in IRT modeling of binary data. Educational and Psychological Measurement, 73, 254274. CrossRefGoogle Scholar
Markovits, H., Fleury, M. -L., Quinn, S., & Venet, M. (1998). The development of conditional reasoning and the structure of semantic memory. Child Development, 69, 742755. CrossRefGoogle ScholarPubMed
Maydeu-Olivares, A., & Joe, H. (2005). Limited- and full-information estimation and goodness-of-fit testing in 2n contingency tables. Journal of the American Statistical Association, 100, 10091020. CrossRefGoogle Scholar
Maydeu-Olivares, A., & Joe, H. (2006). Limited information goodness-of-fit testing in multidimensional contingency tables. Psychometrika, 71, 713732. CrossRefGoogle Scholar
McDonald, R. P. (1982). Linear versus nonlinear models in item response theory. Applied Psychological Measurement, 6, 379396. CrossRefGoogle Scholar
Ng, A., Jordan, M., & Weiss, Y., Dietterich, T., Becker, S. & Ghahramani, Z. (2002). On spectral clustering: Analysis and an algorithm. Advances in neural information processing systems, 14, 849856. Cambridge, MA: MIT Press. Google Scholar
Oh, M. -S., & Raftery, A. (2001). Bayesian multidimensional scaling and choice of dimension. Journal of the American Statistical Association, 96, 10311044. CrossRefGoogle Scholar
Overton, W. F., Neimark, E. D., de Lisi, R. & Newman, J. L. (1985). Scientific methodologies and the competence- moderator performance issue. Moderators of competence, 1541. Hillsdale: Erlbaum. Google Scholar
Piaget, J. (1971). Biology and knowledge, Chicago: University of Chicago Press. Google Scholar
Raftery, A., Niu, X., Hoff, P., & Yeung, K. (2012). Fast inference for the latent space network model using a case–control approximate likelihood. Journal of Computational and Graphical Statistics, 21, 909919. Google Scholar
Rasch, G. (1960). Probabilistic models for some intelligence and attainment tests, Copenhagen: Danish Institute for Educational Research. Google Scholar
Rastelli, R., Friel, N., & Raftery, A. (2016). Properties of latent variable network models. Network Science, 4, 407432. CrossRefGoogle Scholar
Roberge, J. J., & Mason, E. J. (1978). Effects of negation on adolescents’ class and conditional reasoning abilities. The Journal of General Psychology, 98, 187195. CrossRefGoogle ScholarPubMed
Rost, J. (1990). Rasch models in latent classes: An integration of two approaches to item analysis. Applied Psychological Measurement, 14, 271282. CrossRefGoogle Scholar
Shortreed, S., Handcock, M. S., & Hoff, P. (2006). Positional estimation within a latent space model for networks. Methodology, 2, 2433. CrossRefGoogle Scholar
Spiel, C., Gluck, J., Hartig, J., Klieme, E. & Leutner, D. (2008). A model based test of competence profile and competence level in deductive reasoning. Assessment of competencies in educational contexts: State of the art and future prospects, 4160. Gottingen: Hogrefe. Google Scholar
Spiel, C., Gluck, J., & Gossler, H. (2001). Stability and change of unidimensionality: The sample case of deductive reasoning. Journal of Adolescent Research, 16, 150168. CrossRefGoogle Scholar
Stout, W., Habing, B., Douglas, J., Kim, H., Roussos, L., & Zhang, J. (1996). Conditional covariance-based nonparametric multidimensionality assessment. Applied Psychological Measurement, 20, 331354. CrossRefGoogle Scholar
Takene, Y., Rao, C. R. & Sinharay, S. (2007). Applications of multidimensional scaling in psychometrics. Handbook of statistics, 359400. Amsterdam: Elsevier. Google Scholar
van Borkulo, C. D., Borsboom, D., Epskamp, S., Blanken, T. F., Boschloo, L., Schoevers, R. A., & Waldrop, L. J. (2014). A new method for constructing networks from binary data. Scientific Reports, 4, (5918), 110. CrossRefGoogle ScholarPubMed
von Luxburg, U. (2007). A tutorial on spectral clustering. Statistics and Computing, 17, 395416. CrossRefGoogle Scholar
Wainer, H., & Kiely, G. L. (1987). Item clusters and computerized adaptive testing: A case for testlets. Journal of Educational Measurement, 24, 185201. CrossRefGoogle Scholar
Wilson, M., & Adams, R. J. (1995). Rasch models for item bundles. Psychometrika, 60, 181198. CrossRefGoogle Scholar
Yen, W. M. (1984). Effects of local item dependence on the fit and equating performance of the three parameter logistic model. Applied Psychological Measurement, 8, 125145. CrossRefGoogle Scholar
Supplementary material: File

Jin and Jeon supplementary material

Supplementary Materials for “A Doubly Latent Space Joint Model for Local Item and Person Dependence in the Analysis of Item Response Data”
Download Jin and Jeon supplementary material(File)
File 848.2 KB