Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-07T09:57:58.679Z Has data issue: false hasContentIssue false

Bridging Parametric and Nonparametric Methods in Cognitive Diagnosis

Published online by Cambridge University Press:  01 January 2025

Chenchen Ma
Affiliation:
University of Michigan
Jimmy de la Torre
Affiliation:
University of Hong Kong
Gongjun Xu*
Affiliation:
University of Michigan
*
Correspondence should be made to Gongjun Xu, Department of Statistics, University of Michigan, 1085 South University, Ann Arbor 48108, USA. Email: [email protected]

Abstract

A number of parametric and nonparametric methods for estimating cognitive diagnosis models (CDMs) have been developed and applied in a wide range of contexts. However, in the literature, a wide chasm exists between these two families of methods, and their relationship to each other is not well understood. In this paper, we propose a unified estimation framework to bridge the divide between parametric and nonparametric methods in cognitive diagnosis to better understand their relationship. We also develop iterative joint estimation algorithms and establish consistency properties within the proposed framework. Lastly, we present comprehensive simulation results to compare different methods and provide practical recommendations on the appropriate use of the proposed framework in various CDM contexts.

Type
Theory and Methods
Copyright
Copyright © 2022 The Author(s) under exclusive licence to The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s11336-022-09878-2.

References

Celeux, G., Govaert, G., (1992). A classification EM algorithm for clustering and two stochastic versions Computational Statistics and Data Analysis 14(3) 315332 10.1016/0167-9473(92)90042-ECrossRefGoogle Scholar
Chen, Y., Culpepper, S. A., Chen, Y., Douglas, J., (2018). Bayesian estimation of the DINA Q matrix Psychometrika 83(1) 89108 10.1007/s11336-017-9579-4 28861685CrossRefGoogle ScholarPubMed
Chen, Y., Liu, J., Xu, G., Ying, Z., (2015). Statistical analysis of Q-matrix based diagnostic classification models Journal of the American Statistical Association 110(510) 850866 10.1080/01621459.2014.934827 26294801CrossRefGoogle Scholar
Chiu, C-Y Douglas, J., (2013). A nonparametric approach to cognitive diagnosis by proximity to ideal response patterns Journal of Classification 30(2) 225250 10.1007/s00357-013-9132-9CrossRefGoogle Scholar
Chiu, C-Y Douglas, J. A., Li, X., (2009). Cluster analysis for cognitive diagnosis: theory and applications Psychometrika 74 633665 10.1007/s11336-009-9125-0CrossRefGoogle Scholar
Chiu, C-Y Köhn, H-F (2019). Consistency theory for the general nonparametric classification method Psychometrika 84(3) 830845 10.1007/s11336-019-09660-x 30725333CrossRefGoogle ScholarPubMed
Chiu, C.-Y. and Köhn, H.-F. (2019b). Nonparametric methods in cognitively diagnostic assessment. Handbook of Diagnostic Classification Models, pp. 107–132.CrossRefGoogle Scholar
Chiu, C-Y Köhn, H-F Zheng, Y., Henson, R., (2016). Joint maximum likelihood estimation for diagnostic classification models Psychometrika 81(4) 10691092 10.1007/s11336-016-9534-9 27734298CrossRefGoogle ScholarPubMed
Chiu, C-Y Sun, Y., Bian, Y., (2018). Cognitive diagnosis for small educational programs: The general nonparametric classification method Psychometrika 83(2) 355375 10.1007/s11336-017-9595-4 29150816CrossRefGoogle ScholarPubMed
Chung, M., & Johnson, M.S. (2018). An MCMC algorithm for estimating the Q-matrix in a Bayesian framework. arXiv preprint arXiv:1802.02286.Google Scholar
Culpepper, S., (2019). Estimating the cognitive diagnosis Q matrix with expert knowledge: Application to the fraction-subtraction dataset Psychometrika 84(2) 333357 10.1007/s11336-018-9643-8 30456748CrossRefGoogle Scholar
de la Torre, J., (2009). DINA model and parameter estimation: A didactic Journal of Educational and Behavioral Statistics 34(1) 115130 10.3102/1076998607309474CrossRefGoogle Scholar
de la Torre, J., (2011). The generalized DINA model framework Psychometrika 76(2) 179199 10.1007/s11336-011-9207-7CrossRefGoogle Scholar
de la Torre, J., van der Ark, L. A., Rossi, G., (2018). Analysis of clinical data from a cognitive diagnosis modeling framework Measurement and Evaluation in Counseling and Development 51(4) 281296 10.1080/07481756.2017.1327286CrossRefGoogle Scholar
DiBello, L., Roussos, L., Stout, W., (2006). Review of cognitively diagnostic assessment and a summary of psychometric models Handbook of Statistics 26 9791030 10.1016/S0169-7161(06)26031-0CrossRefGoogle Scholar
George, A. C., Robitzsch, A., (2015). Cognitive diagnosis models in R: A didactic The Quantitative Methods for Psychology 11(3) 189205 10.20982/tqmp.11.3.p189CrossRefGoogle Scholar
Gu, Y., & Xu, G. (2019). Learning attribute patterns in high-dimensional structured latent attribute models. Journal of Machine Learning Research 20.Google Scholar
Gu, Y., Xu, G., (2020). Partial identifiability of restricted latent class models The Annals of Statistics 48(4) 20822107 10.1214/19-AOS1878CrossRefGoogle Scholar
Haertel, E. H., (1989). Using restricted latent class models to map the skill structure of achievement items Journal of Educational Measurement 26(4) 301321 10.1111/j.1745-3984.1989.tb00336.xCrossRefGoogle Scholar
Hartz, S. M. (2002). A Bayesian framework for the unified model for assessing cognitive abilities: Blending theory with practicality. Ph. D. thesis, ProQuest Information and Learning.Google Scholar
Henson, R. A., Templin, J. L., Willse, J. T., (2009). Defining a family of cognitive diagnosis models using log-linear models with latent variables Psychometrika 74(2) 191 10.1007/s11336-008-9089-5CrossRefGoogle Scholar
Junker, B. W., Sijtsma, K., (2001). Cognitive assessment models with few assumptions, and connections with nonparametric item response theory Applied Psychological Measurement 25(3) 258272 10.1177/01466210122032064CrossRefGoogle Scholar
Leighton, J. P., Gierl, M. J., Hunka, S. M., (2004). The attribute hierarchy method for cognitive assessment: A variation on Tatsuoka’s rule-space approach Journal of Educational Measurement 41(3) 205237 10.1111/j.1745-3984.2004.tb01163.xCrossRefGoogle Scholar
Liu, J., Xu, G., Ying, Z., (2012). Data-driven learning of Q-matrix Applied Psychological Measurement 36(7) 548564 10.1177/0146621612456591 23926363CrossRefGoogle ScholarPubMed
Liu, J., Ying, Z., Zhang, S., (2015). A rate function approach to computerized adaptive testing for cognitive diagnosis Psychometrika 80(2) 468490 10.1007/s11336-013-9395-4 24327068CrossRefGoogle ScholarPubMed
Ma, C., Xu, G., (2022). Hypothesis testing for hierarchical structures in cognitive diagnosis models Journal of Data Science 20(3) 279302 10.6339/21-JDS1024CrossRefGoogle Scholar
Popescu, P. G., S. S. Dragomir, E. I. Sluşanschi, and O. N. Stănăşilă (2016). Bounds for Kullback-Leibler divergence. Electronic Journal of Differential Equations 2016.Google Scholar
Tatsuoka, K. K., (1983). Rule space: An approach for dealing with misconceptions based on item response theory Journal of Educational Measurement 20(4) 345354 10.1111/j.1745-3984.1983.tb00212.xCrossRefGoogle Scholar
Templin, J., Bradshaw, L., (2014). Hierarchical diagnostic classification models: A family of models for estimating and testing attribute hierarchies Psychometrika 79(2) 317339 10.1007/s11336-013-9362-0 24478021CrossRefGoogle ScholarPubMed
Templin, J. L., Henson, R. A., (2006). Measurement of psychological disorders using cognitive diagnosis models Psychological Methods 11(3) 287 10.1037/1082-989X.11.3.287 16953706CrossRefGoogle ScholarPubMed
van der Vaart, A. W., Asymptotic statistics Cambridge Cambridge University PressGoogle Scholar
von Davier, M., (2000). A general diagnostic model applied to language testing data ETS Research Report Series (2005). 2005(2) i35 10.1002/j.2333-8504.2005.tb01993.xGoogle Scholar
Wang, S., Douglas, J., (2015). Consistency of nonparametric classification in cognitive diagnosis Psychometrika 80(1) 85100 10.1007/s11336-013-9372-y 24297434CrossRefGoogle ScholarPubMed
Xu, G., (2017). Identifiability of restricted latent class models with binary responses The Annals of Statistics 45(2) 675707 10.1214/16-AOS1464CrossRefGoogle Scholar
Xu, G., Shang, Z., (2018). Identifying latent structures in restricted latent class models Journal of the American Statistical Association 113(523) 12841295 10.1080/01621459.2017.1340889CrossRefGoogle Scholar
Supplementary material: File

Ma et al. supplementary material

Ma et al. supplementary material
Download Ma et al. supplementary material(File)
File 200.5 KB