Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-07T18:29:38.221Z Has data issue: false hasContentIssue false

Bayesian Analysis of Multivariate Probit Models with Surrogate Outcome Data

Published online by Cambridge University Press:  01 January 2025

Wai-Yin Poon*
Affiliation:
The Chinese University of Hong Kong
Hai-Bin Wang
Affiliation:
Xiamen University
*
Requests for reprints should be sent to Wai-Yin Poon, Department of Statistics, The Chinese University of Hong Kong, Shatin, Hong Kong, China. E-mail: [email protected]

Abstract

A new class of parametric models that generalize the multivariate probit model and the errors-in-variables model is developed to model and analyze ordinal data. A general model structure is assumed to accommodate the information that is obtained via surrogate variables. A hybrid Gibbs sampler is developed to estimate the model parameters. To obtain a rapidly converged algorithm, the parameter expansion technique is applied to the correlation structure of the multivariate probit models. The proposed model and method of analysis are demonstrated with real data examples and simulation studies.

Type
Original Paper
Copyright
Copyright © 2010 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ashford, J.R., Sowden, R.R. (1970). Multivariate probit analysis. Biometrics, 26, 535546.CrossRefGoogle Scholar
Au, K.Y. (1999). Intra-cultural variation: Evidence and implications for international business. Journal of International Business Studies, 30, 799812.CrossRefGoogle Scholar
Bock, R.D., Gibbons, R.D. (1996). High-dimensional multivariate probit analysis. Biometrics, 52, 11831194.CrossRefGoogle ScholarPubMed
Bollinger, C.R., David, M.H. (1997). Modeling discrete choice with response error: food stamp participation. Journal of the American Statistical Association, 92, 827835.CrossRefGoogle Scholar
Buonaccorsi, J.P. (1990). Double sampling for the exact values in some multivariate measurement error problems. Journal of the American Statistical Association, 85, 10751082.CrossRefGoogle Scholar
Chen, J., Cai, J., Zhou, H. (2004). Two-step estimation for a generalized linear mixed model with auxiliary covariates. Statistica Sinica, 14, 361376.Google Scholar
Chen, Y.H. (2000). A robust imputation method for surrogate outcome data. Biometrika, 87, 711716.CrossRefGoogle Scholar
Cheng, K.G., Hsueh, H.M. (2003). Estimation of a logistic regression model with mismeasured observations. Statistica Sinica, 13, 111127.Google Scholar
Chib, S., Greenberg, E. (1998). Analysis of multivariate probit models. Biometrika, 85, 347361.CrossRefGoogle Scholar
Dempster, A.P., Laird, N.M., Rubin, D.B. (1977). Maximum likelihood from incomplete data via the EM algorithm (with discussion). Journal of the Royal Statistical Society B, 39, 138.CrossRefGoogle Scholar
Eickhoff, J.C., Amemiya, Y. (2005). Latent variable models for misclassified polytomous outcome variables. British Journal of Mathematical and Statistical Psychology, 58, 359375.CrossRefGoogle ScholarPubMed
Espeland, M.A., Odoroff, C.L. (1985). Log-linear models for doubly sampled categorical data fitted by the EM algorithm. Journal of the American Statistical Association, 80, 663670.CrossRefGoogle Scholar
Gelman, A., Rubin, D.B. (1992). Inference from iterative simulation using multiple sequences. Statistical Science, 7, 457472.CrossRefGoogle Scholar
Geman, S., Geman, D. (1984). Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6, 721741.CrossRefGoogle ScholarPubMed
Hastings, W.K. (1970). Monte Carlo sampling methods using Markov chains and their applications. Biometrika, 57, 97109.CrossRefGoogle Scholar
International Social Survey Program (ISSP) (1989). International social science program: work orientations [Computer file].Google Scholar
Lawrence, E., Bingham, D., Liu, C., Nair, V.N. (2008). Bayesian inference for multivariate ordinal data using parameter expansion. Technometrics, 50, 182191.CrossRefGoogle Scholar
Liu, X., Daniels, M.J. (2006). A new algorithm for simulating a correlation matrix based on parameter expansion and reparameterization. Journal of Computational and Graphical Statistics, 15, 897914.CrossRefGoogle Scholar
Liu, C., Rubin, D.B., Wu, Y.N. (1998). Parameter expansion to accelerate EM: the PX-EM algorithm. Biometrika, 85, 755770.CrossRefGoogle Scholar
Liu, J.S., Wu, Y.N. (1999). Parameter expansion for data augmentation. Journal of the American Statistical Association, 94, 12641274.CrossRefGoogle Scholar
Meng, X.L., van Dyk, D.A. (1999). Seeking efficient data augmentation schemes via conditional and marginal augmentation. Biometrika, 86, 301320.CrossRefGoogle Scholar
Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E. (1953). Equations of state calculations by fast computing machine. Journal of Chemical Physics, 21, 10871091.CrossRefGoogle Scholar
Ochi, Y., Prentice, R.L. (1984). Likelihood inference in a correlated probit regression model. Biometrika, 71, 531543.CrossRefGoogle Scholar
Palmgren, J. (1987). Precision of double sampling estimators for comparing two probabilities. Biometrika, 74, 687694.CrossRefGoogle Scholar
Pepe, M.S. (1992). Inference using surrogate outcome data and a validation sample. Biometrika, 79, 355365.CrossRefGoogle Scholar
Pepe, M.S., Reilly, M., Fleming, T.R. (1994). Auxiliary outcome data and the mean score method. Journal of Statistical Planning and Inference, 42, 137160.CrossRefGoogle Scholar
Poon, W.Y., Leung, K., Lee, S.Y. (2002). The comparison of single item constructs by relative mean and relative variance. Organizational Research Methods, 5, 275298.CrossRefGoogle Scholar
Poon, W.Y., Wang, H.B. (2010). Analysis of ordinal categorical data with misclassification. British Journal of Mathematical and Statistical Psychology, 63, 1742.CrossRefGoogle ScholarPubMed
Press, S.J. (1968). Estimating from misclassified data. Journal of the American Statistical Association, 63, 123132.CrossRefGoogle Scholar
Song, X.Y., Lee, S.Y. (2005). A multivariate probit latent variable model for analyzing dichotomous responses. Statistica Sinica, 15, 645664.Google Scholar
Tanner, M.A., Wong, W.H. (1987). The calculation of posterior distributions by data augmentation (with discussion). Journal of the American Statistical Association, 82, 528550.CrossRefGoogle Scholar
Tenenbein, A. (1970). A double sampling scheme for estimating from binomial data with misclassifications. Journal of the American Statistical Association, 65, 13501361.CrossRefGoogle Scholar
Tierney, L. (1994). Markov chains for exploring posterior distributions (with discussion). The Annals of Statistics, 22, 17011762.Google Scholar
van Dyk, D.A., Meng, X.-L. (2001). The art of data augmentation (with discussion). Journal of Computational and Graphical Statistics, 10, 1111.CrossRefGoogle Scholar
Wang, Q., Rao, J.N.K. (2002). Empirical likelihood-based inference in linear errors-in-covariables models with validation data. Biometrika, 89, 345358.CrossRefGoogle Scholar
Wang, Q., Yu, K. (2007). Likelihood-based kernel estimation in semiparametric errors-in-covariables models with validation data. Journal of Multivariate Analysis, 98, 455480.CrossRefGoogle Scholar
Wei, G.C.G., Tanner, M.A. (1990). A Monte Carlo implementation of the EM algorithm and the poor man’s data augmentation algorithm. Journal of the American Statistical Association, 85, 699704.CrossRefGoogle Scholar
Yiu, C.F., Poon, W.Y. (2008). Estimating the polychoric correlation from misclassified data. British Journal of Mathematical and Statistical Psychology, 61, 4974.CrossRefGoogle ScholarPubMed
Zhang, X., Boscardin, W.J., Belin, T.R. (2006). Sampling correlation matrices in Bayesian models with correlated latent variables. Journal of Computational and Graphical Statistics, 15, 880896.CrossRefGoogle Scholar
Zhou, H., Chen, J., Cai, J. (2002). Random effects logistic regression analysis with auxiliary covariates. Biometrics, 58, 352360.CrossRefGoogle ScholarPubMed