Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-25T01:15:01.961Z Has data issue: false hasContentIssue false

Within-person increase in pathological worry predicts future depletion of unique executive functioning domains

Published online by Cambridge University Press:  19 March 2020

Nur Hani Zainal*
Affiliation:
Department of Psychology, The Pennsylvania State University, University Park, PA, USA
Michelle G. Newman
Affiliation:
Department of Psychology, The Pennsylvania State University, University Park, PA, USA
*
Author for correspondence: Nur Hani Zainal, E-mail: [email protected]

Abstract

Background

Affective neuroscience and scar theories propose that increased excessive worry, the hallmark symptom of generalized anxiety disorder (GAD), predicts future declines in executive functioning (EF). However, the preponderance of cross-sectional designs used to examine between-person chronic worry–EF relationships has blocked progress on understanding their potentially causal within-person associations. Accordingly, this study used bivariate dual latent change score (LCS) models to test whether within-person increased GAD severity might relate to future reduced EF.

Methods

Community-dwelling adults (N = 2581, 46 years on average, s.d. = 11.40, 54.71% female) were assessed for GAD symptom severity (Composite International Diagnostic Interview-Short Form) across three waves, spaced about 9 years apart. Three aspects of EF [inhibition, set-shifting, and mixing costs (MCs; a measure related to common EF)], were assessed with stop-and-go switch tasks. Participants responded to 20 normal and 20 reverse single-task block trials and 32 mixed-task switch block trials. EF tests were administered at time 2 (T2) and time 3 (T3), but not at time 1 (T1).

Results

After controlling for T1 depression, LCS models revealed that within-person increased T1 − T2 GAD severity substantially predicted future reduced T2 − T3 inhibition and set-shifting (both indexed by accuracy and latency), and MC (indexed by latency) with moderate-to-large effect sizes (|d| = 0.51–0.96).

Conclusions

Results largely support scar theories by offering preliminary within-person, naturalistic evidence that heightened excessive worry can negatively predict future distinct aspects of cognitive flexibility. Effectively targeting pathological worry might prevent difficulties arising from executive dysfunction.

Type
Original Article
Copyright
Copyright © The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abel, J. L., & Borkovec, T. D. (1995). Generalizability of DSM-III-R generalized anxiety disorders to proposed DSM-IV criteria and cross-validation of proposed changes. Journal of Anxiety Disorders, 9, 303315. doi:10.1016/0887-6185(95)00011-C.CrossRefGoogle Scholar
Andreescu, C., Sheu, L. K., Tudorascu, D., Gross, J. J., Walker, S., Banihashemi, L., & Aizenstein, H. (2015). Emotion reactivity and regulation in late-life generalized anxiety disorder: Functional connectivity at baseline and post-treatment. American Journal of Geriatric Psychiatry, 23, 200214. doi:10.1016/j.jagp.2014.05.003.CrossRefGoogle ScholarPubMed
Baddeley, A. D. (2001). Is working memory still working? European Psychologist, 56, 851864. doi:10.1037/0003-066X.56.11.851.CrossRefGoogle ScholarPubMed
Banich, M. T. (2009). Executive function: The search for an integrated account. Current Directions in Psychological Science, 18, 8994. doi:10.1111/j.1467-8721.2009.01615.x.CrossRefGoogle Scholar
Beaudreau, S. A., MacKay-Brandt, A., & Reynolds, J. (2013). Application of a cognitive neuroscience perspective of cognitive control to late-life anxiety. Journal of Anxiety Disorders, 27, 559566. doi:10.1016/j.janxdis.2013.03.006.CrossRefGoogle ScholarPubMed
Beckwé, M., Deroost, N., Koster, E. H. W., De Lissnyder, E., & De Raedt, R. (2014). Worrying and rumination are both associated with reduced cognitive control. Psychological Research, 78, 651660. doi:10.1007/s00426-013-0517-5.CrossRefGoogle ScholarPubMed
Beluche, I., Carrière, I., Ritchie, K., & Ancelin, M. L. (2010). A prospective study of diurnal cortisol and cognitive function in community-dwelling elderly people. Psychological Medicine, 40, 10391049. doi:10.1017/S0033291709991103.CrossRefGoogle ScholarPubMed
Bentler, P. M. (1990). Comparative fit indexes in structural models. Psychological Bulletin, 107, 238246. doi:10.1037/0033-2909.107.2.238.CrossRefGoogle ScholarPubMed
Best, J. R., Miller, P. H., & Jones, L. L. (2009). Executive functions after age 5: Changes and correlates. Developmental Review, 29, 180200. doi:10.1016/j.dr.2009.05.002.CrossRefGoogle ScholarPubMed
Bielak, A. A. M., Gerstorf, D., Kiely, K. M., Anstey, K. J., & Luszcz, M. (2011). Depressive symptoms predict decline in perceptual speed in older adulthood. Psychology and Aging, 26, 576583. doi:10.1037/a0023313.CrossRefGoogle ScholarPubMed
Brosschot, J. F., Gerin, W., & Thayer, J. F. (2006). The perseverative cognition hypothesis: A review of worry, prolonged stress-related physiological activation, and health. Journal of Psychosomatic Research, 60, 113124. doi:10.1016/j.jpsychores.2005.06.074.CrossRefGoogle ScholarPubMed
Brown, T. A. (2015). Confirmatory factor analysis for applied research (2nd ed.). New York: Guilford Press.Google Scholar
Brown, L. A., Brockmole, J. R., Gow, A. J., & Deary, I. J. (2012). Processing speed and visuospatial executive function predict visual working memory ability in older adults. Experimental Aging Research, 38, 119. doi:10.1080/0361073X.2012.636722.CrossRefGoogle ScholarPubMed
Cain, M. K., Zhang, Z., & Yuan, K.-H. (2017). Univariate and multivariate skewness and kurtosis for measuring nonnormality: Prevalence, influence and estimation. Behavior Research Methods, 49, 17161735. doi:10.3758/s13428-016-0814-1.CrossRefGoogle ScholarPubMed
Carnevali, L., Thayer, J. F., Brosschot, J. F., & Ottaviani, C. (2018). Heart rate variability mediates the link between rumination and depressive symptoms: A longitudinal study. International Journal of Psychophysiology, 131, 131138. doi:10.1016/j.ijpsycho.2017.11.002.CrossRefGoogle ScholarPubMed
Chiesa, A., Calati, R., & Serretti, A. (2011). Does mindfulness training improve cognitive abilities? A systematic review of neuropsychological findings. Clinical Psychology Review, 31, 449464. doi:10.1016/j.cpr.2010.11.003.CrossRefGoogle ScholarPubMed
Cohen, J. (1988). Statistical power for the social sciences. Hillsdale, NJ: Laurence Erlbaum and Associates.Google Scholar
Course-Choi, J., Saville, H., & Derakshan, N. (2017). The effects of adaptive working memory training and mindfulness meditation training on processing efficiency and worry in high worriers. Behavioral Research and Therapy, 89, 113. doi:10.1016/j.brat.2016.11.002.CrossRefGoogle ScholarPubMed
Davidson, K. W., Mostofsky, E., & Whang, W. (2010). Don't worry, be happy: Positive affect and reduced 10-year incident coronary heart disease: The Canadian Nova Scotia Health Survey. European Heart Journal, 31, 10651070. doi:10.1093/eurheartj/ehp603.CrossRefGoogle ScholarPubMed
Deary, I. J., Corley, J., Gow, A. J., Harris, S. E., Houlihan, L. M., Marioni, R. E., … Starr, J. M. (2009). Age-associated cognitive decline. British Medical Bulletin, 92, 135152. doi:10.1093/bmb/ldp033.CrossRefGoogle ScholarPubMed
Dunlap, W. P., Cortina, J. M., Vaslow, J. B., & Burke, M. J. (1996). Meta-analysis of experiments with matched groups or repeated measures designs. Psychological Methods, 1, 170177. doi:10.1037/1082-989x.1.2.170.CrossRefGoogle Scholar
Dunst, C. J., Hamby, D. W., & Trivette, C. M. (2004). Guidelines for calculating effect sizes for practice-based research syntheses. Centerscope, 3, 110.Google Scholar
Evans, G. W., & Fuller-Rowell, T. E. (2013). Childhood poverty, chronic stress, and young adult working memory: The protective role of self-regulatory capacity. Developmental Science, 16, 688696. doi:10.1111/desc.12082.CrossRefGoogle Scholar
Eysenck, M. W., Derakshan, N., Santos, R., & Calvo, M. G. (2007). Anxiety and cognitive performance: Attentional control theory. Emotion (Washington, D.C.), 7, 336353. doi:10.1037/1528-3542.7.2.336.CrossRefGoogle ScholarPubMed
Falkenström, F., Finkel, S., Sandell, R., Rubel, J. A., & Holmqvist, R. (2017). Dynamic models of individual change in psychotherapy process research. Journal of Consulting and Clinical Psychology, 85, 537549. doi:10.1037/ccp0000203.CrossRefGoogle ScholarPubMed
Fisher, A. J., Medaglia, J. D., & Jeronimus, B. F. (2018). Lack of group-to-individual generalizability is a threat to human subjects research. Proceedings of the National Academy of Sciences of the USA, 115, E6106E6115. doi:10.1073/pnas.1711978115.CrossRefGoogle ScholarPubMed
Gerstorf, D., Lövdén, M., Röcke, C., Smith, J., & Lindenberger, U. (2007). Well-being affects changes in perceptual speed in advanced old age: Longitudinal evidence for a dynamic link. Developmental Psychology, 43, 705718. doi:10.1037/0012-1649.43.3.705.CrossRefGoogle ScholarPubMed
Gimson, A., Schlosser, M., Huntley, J. D., & Marchant, N. L. (2018). Support for midlife anxiety diagnosis as an independent risk factor for dementia: A systematic review. BMJ Open, 8, e019399. doi:10.1136/bmjopen-2017-019399.CrossRefGoogle ScholarPubMed
Graham, J. W. (2009). Missing data analysis: Making it work in the real world. Annual Review of Psychology, 60, 549576. doi:10.1146/annurev.psych.58.110405.085530.CrossRefGoogle ScholarPubMed
Grol, M., Schwenzfeier, A. K., Stricker, J., Booth, C., Temple-McCune, A., Derakshan, N., … Fox, E. (2018). The worrying mind in control: An investigation of adaptive working memory training and cognitive bias modification in worry-prone individuals. Behaviour Research and Therapy, 103, 111. doi:10.1016/j.brat.2018.01.005.CrossRefGoogle ScholarPubMed
Gulpers, B. J. A., Oude Voshaar, R. C., van Boxtel, M. P. J., Verhey, F. R. J., & Köhler, S. (2019). Anxiety as a risk factor for cognitive decline: A 12-year follow-up cohort study. American Journal of Geriatric Psychiatry, 27, 4252. doi:10.1016/j.jagp.2018.09.006.CrossRefGoogle ScholarPubMed
Hallion, L. S., Ruscio, A. M., & Jha, A. P. (2014). Fractionating the role of executive control in control over worry: A preliminary investigation. Behaviour Research and Therapy, 54, 16. doi:10.1016/j.brat.2013.12.002.CrossRefGoogle ScholarPubMed
Hallion, L. S., Tolin, D. F., Assaf, M., Goethe, J., & Diefenbach, G. J. (2017). Cognitive control in generalized anxiety disorder: Relation of inhibition impairments to worry and anxiety severity. Cognitive Therapy and Research, 41, 610618. doi:10.1007/s10608-017-9832-2.CrossRefGoogle Scholar
Hayes, S., Hirsch, C., & Mathews, A. (2008). Restriction of working memory capacity during worry. Journal of Abnormal Psychology, 117, 712717. doi:10.1037/a0012908.CrossRefGoogle ScholarPubMed
Hertzog, C., Dixon, R. A., Hultsch, D. F., & MacDonald, S. W. S. (2003). Latent change models of adult cognition: Are changes in processing speed and working memory associated with changes in episodic memory? Psychology and Aging, 18, 755769. doi:10.1037/0882-7974.18.4.755.CrossRefGoogle ScholarPubMed
Johansson, L., Guo, X., Hällström, T., Norton, M. C., Waern, M., Östling, S., … Skoog, I. (2013). Common psychosocial stressors in middle-aged women related to longstanding distress and increased risk of Alzheimer's disease: A 38-year longitudinal population study. BMJ Open, 3, e003142. doi:10.1136/bmjopen-2013-003142.CrossRefGoogle ScholarPubMed
Johansson, L., Guo, X., Waern, M., Östling, S., Gustafson, D., Bengtsson, C., & Skoog, I. (2010). Midlife psychological stress and risk of dementia: A 35-year longitudinal population study. Brain, 133, 22172224. doi:10.1093/brain/awq116.CrossRefGoogle ScholarPubMed
Kassem, A. M., Ganguli, M., Yaffe, K., Hanlon, J. T., Lopez, O. L., Wilson, J. W., & Cauley, J. A. (2017). Anxiety symptoms and risk of cognitive decline in older community-dwelling men. International Psychogeriatrics, 29, 11371145. doi:10.1017/S104161021700045X.CrossRefGoogle ScholarPubMed
Kawachi, I., Sparrow, D., Vokonas, P. S., & Weiss, S. T. (1994). Symptoms of anxiety and risk of coronary heart disease. The Normative Aging Study. Circulation, 90, 22252229. doi:10.1161/01.CIR.90.5.2225.CrossRefGoogle ScholarPubMed
Kessler, R. C., Andrews, G., Mroczek, D., Ustun, B., & Wittchen, H.-U. (1998). The World Health Organization Composite International Diagnostic Interview short-form (CIDI-SF). International Journal of Methods in Psychiatric Research, 7, 171185. doi:10.1002/mpr.47.CrossRefGoogle Scholar
Kim, P., Evans, G. W., Angstadt, M., Ho, S. S., Sripada, C. S., Swain, J. E., … Phan, K. L. (2013). Effects of childhood poverty and chronic stress on emotion regulatory brain function in adulthood. Proceedings of the National Academy of Sciences, 110, 1844218447. doi:10.1073/pnas.1308240110.CrossRefGoogle ScholarPubMed
Kubzansky, L. D., Kawachi, I., Spiro, A. 3rd, Weiss, S. T., Vokonas, P. S., & Sparrow, D. (1997). Is worrying bad for your heart? A prospective study of worry and coronary heart disease in the Normative Aging Study. Circulation, 95, 818824. doi:10.1161/01.CIR.95.4.818.CrossRefGoogle Scholar
Lachman, M. E., Agrigoroaei, S., Tun, P. A., & Weaver, S. L. (2014). Monitoring cognitive functioning: Psychometric properties of the Brief Test of Adult Cognition by Telephone (BTACT). Assessment, 21, 404417. doi:10.1177/1073191113508807.CrossRefGoogle Scholar
Lee, B. K., Glass, T. A., Wand, G. S., McAtee, M. J., Bandeen-Roche, K., Bolla, K. I., & Schwartz, B. S. (2008). Apolipoprotein E genotype, cortisol, and cognitive function in community-dwelling older adults. American Journal of Psychiatry, 165, 14561464. doi:10.1176/appi.ajp.2008.07091532.CrossRefGoogle ScholarPubMed
Leigh, E., & Hirsch, C. R. (2011). Worry in imagery and verbal form: Effect on residual working memory capacity. Behaviour Research and Therapy, 49, 99105. doi:10.1016/j.brat.2010.11.005.CrossRefGoogle ScholarPubMed
Leonard, K., & Abramovitch, A. (2019). Cognitive functions in young adults with generalized anxiety disorder. European Psychiatry, 56, 17. doi:10.1016/j.eurpsy.2018.10.008.CrossRefGoogle ScholarPubMed
Makovac, E., Fagioli, S., Watson, D. R., Meeten, F., Smallwood, J., Critchley, H. D., & Ottaviani, C. (2019). Response time as a proxy of ongoing mental state: A combined fMRI and pupillometry study in generalized anxiety disorder. NeuroImage, 191, 380391. doi:10.1016/j.neuroimage.2019.02.038.CrossRefGoogle ScholarPubMed
Makovac, E., Watson, D. R., Meeten, F., Garfinkel, S. N., Cercignani, M., Critchley, H. D., & Ottaviani, C. (2016). Amygdala functional connectivity as a longitudinal biomarker of symptom changes in generalized anxiety. Social Cognitive and Affective Neuroscience, 11, 17191728. doi:10.1093/scan/nsw091.CrossRefGoogle ScholarPubMed
McArdle, J. J. (2009). Latent variable modeling of differences and changes with longitudinal data. Annual Review of Psychology, 60, 577605. doi:10.1146/annurev.psych.60.110707.163612.CrossRefGoogle ScholarPubMed
Meade, A. W., Johnson, E. C., & Braddy, P. W. (2008). Power and sensitivity of alternative fit indices in tests of measurement invariance. Journal of Applied Psychology, 93, 568592. doi:10.1037/0021-9010.93.3.568.CrossRefGoogle ScholarPubMed
Millsap, R. E., & Yun-Tein, J. (2004). Assessing factorial invariance in ordered-categorical measures. Multivariate Behavioral Research, 39, 479515. doi:10.1207/S15327906MBR3903_4.CrossRefGoogle Scholar
Miyake, A., & Friedman, N. P. (2012). The nature and organization of individual differences in executive functions. Current Directions in Psychological Science, 21, 814. doi:10.1177/0963721411429458.CrossRefGoogle ScholarPubMed
Moran, T. P. (2016). Anxiety and working memory capacity: A meta-analysis and narrative review. Psychological Bulletin, 142, 831864. doi:10.1037/bul0000051.CrossRefGoogle ScholarPubMed
Moran, T. P., Bernat, E. M., Aviyente, S., Schroder, H. S., & Moser, J. S. (2015). Sending mixed signals: Worry is associated with enhanced initial error processing but reduced call for subsequent cognitive control. Social Cognitive and Affective Neuroscience, 10, 15481556. doi:10.1093/scan/nsv046.CrossRefGoogle ScholarPubMed
Ottaviani, C, Watson, D. R., Meeten, F., Makovac, E., Garfinkel, S. N., & Critchley, H. D.. (2016). Neurobiological substrates of cognitive rigidity and autonomic inflexibility in generalized anxiety disorder. Biological Psychology, 119, 3141. http://dx.doi.org/10.1016/j.biopsycho.2016.06.009CrossRefGoogle ScholarPubMed
Petkus, A. J., Reynolds, C. A., Wetherell, J. L., Kremen, W. S., & Gatz, M. (2017). Temporal dynamics of cognitive performance and anxiety across older adulthood. Psychology and Aging, 32, 278292. doi:10.1037/pag0000164.CrossRefGoogle ScholarPubMed
Pietrzak, R. H., Maruff, P., Woodward, M., Fredrickson, J., Fredrickson, A., Krystal, J. H., … Darby, D. (2012). Mild worry symptoms predict decline in learning and memory in healthy older adults: A 2-year prospective cohort study. The American Journal of Geriatric Psychiatry, 20, 266275. doi:10.1097/JGP.0b013e3182107e24.CrossRefGoogle ScholarPubMed
Pietrzak, R. H., Scott, J. C., Neumeister, A., Lim, Y. Y., Ames, D., Ellis, K. A., … Maruff, P. (2014). Anxiety symptoms, cerebral amyloid burden and memory decline in healthy older adults without dementia: 3-year prospective cohort study. British Journal of Psychiatry, 204, 400401. doi:10.1192/bjp.bp.113.134239.CrossRefGoogle ScholarPubMed
Rosseel, Y. (2012). Lavaan: An R package for structural equation modeling. Journal of Statistical Software, 48, 136. doi:10.18637/jss.v048.i02.CrossRefGoogle Scholar
Rubin, O., & Meiran, N. (2005). On the origins of the task mixing cost in the cuing task-switching paradigm. Journal of Experimental Psychology: Learning, Memory, and Cognition, 31, 14771491. doi:10.1037/0278-7393.31.6.1477.Google Scholar
Ryff, C., Almeida, D. M., Ayanian, J., Carr, D. S., Cleary, P. D., Coe, C., … Williams, D. (2017). Midlife in the United States (MIDUS 2), 2004–2006. ICPSR04652-v7. Ann Arbor, MI: Inter-university Consortium for Political and Social Research (distributor), 2017-11-20. doi:10.3886/ICPSR04652.v7.CrossRefGoogle Scholar
Ryff, C. D., & Lachman, M. E. (2018). Midlife in the United States (MIDUS 3): Cognitive project, 2013–2017. doi:10.3886/ICPSR37095.v1.CrossRefGoogle Scholar
Shadish, W. R., Cook, T. D., & Campbell, D. T. (2002). Experimental and quasi-experimental designs for generalized causal inference. Boston, MA: Houghton Mifflin.Google Scholar
Simes, R. J. (1986). An improved Bonferroni procedure for multiple tests of significance. Biometrika, 73, 751754. doi:10.2307/2336545.CrossRefGoogle Scholar
Smith, L. L., Banich, M. T., & Friedman, N. P. (2019). Individual differences in mixing costs relate to general executive functioning. Journal of Experimental Psychology: Learning, Memory, and Cognition, 45, 606613. doi:10.1037/xlm0000613.Google ScholarPubMed
Snyder, H. R., Miyake, A., & Hankin, B. L. (2015). Advancing understanding of executive function impairments and psychopathology: Bridging the gap between clinical and cognitive approaches. Frontiers in Psychology, 6, 328. doi:10.3389/fpsyg.2015.00328.CrossRefGoogle ScholarPubMed
Stefanopoulou, E., Hirsch, C. R., Hayes, S., Adlam, A., & Coker, S. (2014). Are attentional control resources reduced by worry in generalized anxiety disorder? Journal of Abnormal Psychology, 123, 330335. doi:10.1037/a0036343.CrossRefGoogle ScholarPubMed
Steiger, J. H. (1990). Structural model evaluation and modification: An interval estimation approach. Multivariate Behavioral Research, 25, 173180. doi:10.1207/s15327906mbr2502_4.CrossRefGoogle ScholarPubMed
Stordal, K. I., Mykletun, A., Asbjørnsen, A., Egeland, J., Landrø, N. I., Roness, A., … Lund, A. (2005). General psychopathology is more important for executive functioning than diagnosis. Acta Psychiatrica Scandinavica, 111, 2228. doi:10.1111/j.1600-0447.2004.00389.x.CrossRefGoogle ScholarPubMed
Teper, R., Segal, Z. V., & Inzlicht, M. (2013). Inside the mindful mind: How mindfulness enhances emotion regulation through improvements in executive control. Current Directions in Psychological Science, 22, 449454. doi:10.1177/0963721413495869.CrossRefGoogle Scholar
Tetzner, J., & Schuth, M. (2016). Anxiety in late adulthood: Associations with gender, education, and physical and cognitive functioning. Psychology and Aging, 31, 532544. doi:10.1037/pag0000108.CrossRefGoogle ScholarPubMed
Thurston, R. C., Kubzansky, L. D., Kawachi, I., & Berkman, L. F. (2006). Do depression and anxiety mediate the link between educational attainment and CHD? Psychosomatic Medicine, 68, 2532. doi:10.1097/01.psy.0000195883.68888.68.CrossRefGoogle ScholarPubMed
Tun, P. A., & Lachman, M. E. (2006). Telephone assessment of cognitive function in adulthood: The Brief Test of Adult Cognition by Telephone. Age and Ageing, 35, 629632. doi:10.1093/ageing/afl095.CrossRefGoogle Scholar
Vandierendonck, A., Liefooghe, B., & Verbruggen, F. (2010). Task switching: Interplay of reconfiguration and interference control. Psychological Bulletin, 136, 601626. doi:10.1037/a0019791.CrossRefGoogle ScholarPubMed
Vredeveldt, A., Hitch, G. J., & Baddeley, A. D. (2011). Eyeclosure helps memory by reducing cognitive load and enhancing visualisation. Memory & Cognition, 39, 12531263. doi:10.3758/s13421-011-0098-8.CrossRefGoogle ScholarPubMed
West, S. G., Finch, J. F., & Curran, P. J. (1995). Structural equation models with nonnormal variables: Problems and remedies. In Hoyle, R. H. (Ed.), Structural equation modeling: Concepts, issues, and applications (pp. 5675). Thousand Oaks, CA: Sage Publications, Inc.Google Scholar
Wetherell, J. L., Hershey, T., Hickman, S., Tate, S. R., Dixon, D., Bower, E. S., & Lenze, E. J. (2017). Mindfulness-based stress reduction for older adults with stress disorders and neurocognitive difficulties: A randomized controlled trial. Journal of Clinical Psychiatry, 78, e734e743. doi:10.4088/JCP.16m10947.CrossRefGoogle ScholarPubMed
Wetherell, J. L., Reynolds, C. A., Gatz, M., & Pedersen, N. L. (2002). Anxiety, cognitive performance, and cognitive decline in normal aging. Journals of Gerontology, Series B: Psychological Sciences and Social Sciences, 57, P246P255. doi:10.1093/geronb/57.3.P246.CrossRefGoogle ScholarPubMed
Williams, M. O., Mathews, A., & Hirsch, C. R. (2014). Verbal worry facilitates attention to threat in high-worriers. Journal of Behavior Therapy and Experimental Psychiatry, 45, 814. doi:10.1016/j.jbtep.2013.05.006.CrossRefGoogle ScholarPubMed
Wittchen, H. U., Zhao, S., Kessler, R. C., & Eaton, W. W. (1994). DSM-III-R generalized anxiety disorder in the National Comorbidity Survey. Archives of General Psychiatry, 51, 355364. doi:10.1001/archpsyc.1994.03950050015002.CrossRefGoogle ScholarPubMed
Wright, A. G. C., Calabrese, W. R., Rudick, M. M., Yam, W. H., Zelazny, K., Williams, T. F., … Simms, L. J. (2015). Stability of the DSM-5 Section III pathological personality traits and their longitudinal associations with psychosocial functioning in personality disordered individuals. Journal of Abnormal Psychology, 124, 199207. doi:10.1037/abn0000018.CrossRefGoogle ScholarPubMed
Yuan, K.-H., & Bentler, P. M. (2000). Three likelihood-based methods for mean and covariance structure analysis with nonnormal missing data. Sociological Methodology, 30, 165200. doi:10.1111/0081-1750.00078.CrossRefGoogle Scholar
Zainal, N. H., & Newman, M. G. (2018). Executive function and other cognitive deficits are distal risk factors of generalized anxiety disorder 9 years later. Psychological Medicine, 48, 20452053. doi:10.1017/S0033291717003579.CrossRefGoogle ScholarPubMed
Zetsche, U., Bürkner, P.-C., & Schulze, L. (2018). Shedding light on the association between repetitive negative thinking and deficits in cognitive control – A meta-analysis. Clinical Psychology Review, 63, 5665. doi:10.1016/j.cpr.2018.06.001.CrossRefGoogle ScholarPubMed
Zhang, X., Norton, J., Carriere, I., Ritchie, K., Chaudieu, I., & Ancelin, M. L. (2015). Risk factors for late-onset generalized anxiety disorder: Results from a 12-year prospective cohort (The ESPRIT study). Translational Psychiatry, 5, e536. doi:10.1038/tp.2015.31.CrossRefGoogle Scholar
Supplementary material: File

Zainal and Newman supplementary material

Zainal and Newman supplementary material

Download Zainal and Newman supplementary material(File)
File 24.1 KB