Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-15T06:43:32.402Z Has data issue: false hasContentIssue false

What is the impact of genome-wide supported risk variants for schizophrenia and bipolar disorder on brain structure and function? A systematic review

Published online by Cambridge University Press:  10 April 2015

R. Gurung
Affiliation:
Department of Psychosis Studies, Institute of Psychiatry, King's College London, UK
D. P. Prata*
Affiliation:
Centre for Neuroimaging Sciences, Institute of Psychiatry, King's College London, UK Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
*
*Address for correspondence: D. P. Prata, Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Av. Professor Egas Moniz, 1649-028 Lisboa, Portugal. (Email: [email protected])

Abstract

The powerful genome-wide association studies (GWAS) revealed common mutations that increase susceptibility for schizophrenia (SZ) and bipolar disorder (BD), but the vast majority were not known to be functional or associated with these illnesses. To help fill this gap, their impact on human brain structure and function has been examined. We systematically discuss this output to facilitate its timely integration in the psychosis research field; and encourage reflection for future research. Irrespective of imaging modality, studies addressing the effect of SZ/BD GWAS risk genes (ANK3, CACNA1C, MHC, TCF4, NRGN, DGKH, PBRM1, NCAN and ZNF804A) were included. Most GWAS risk variations were reported to affect neuroimaging phenotypes implicated in SZ/BD: white-matter integrity (ANK3 and ZNF804A), volume (CACNA1C and ZNF804A) and density (ZNF804A); grey-matter (CACNA1C, NRGN, TCF4 and ZNF804A) and ventricular (TCF4) volume; cortical folding (NCAN) and thickness (ZNF804A); regional activation during executive tasks (ANK3, CACNA1C, DGKH, NRGN and ZNF804A) and functional connectivity during executive tasks (CACNA1C and ZNF804A), facial affect recognition (CACNA1C and ZNF804A) and theory-of-mind (ZNF804A); but inconsistencies and non-replications also exist. Further efforts such as standardizing reporting and exploring complementary designs, are warranted to test the reproducibility of these early findings.

Type
Review Article
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andreasen, NC, Calarge, CA, O'Leary, DS (2008). Theory of mind and schizophrenia: a positron emission tomography study of medication-free patients. Schizophrenia Bulletin 34, 708719.CrossRefGoogle ScholarPubMed
Ansorge, WJ (2009). Next-generation DNA sequencing techniques. New Biotechnology 25, 195203.Google Scholar
Arseneault, L, Cannon, M, Witton, J, Murray, RM (2004). Causal association between cannabis and psychosis: examination of the evidence. British Journal of Psychiatry 184, 110117.Google Scholar
Athanasiu, L, Mattingsdal, M, Kahler, AK, Brown, A, Gustafsson, O, Agartz, I, Giegling, I, Muglia, P, Cichon, S, Rietschel, M, Pietilainen, OP, Peltonen, L, Bramon, E, Collier, D, Clair, DS, Sigurdsson, E, Petursson, H, Rujescu, D, Melle, I, Steen, VM, Djurovic, S, Andreassen, OA (2010). Gene variants associated with schizophrenia in a Norwegian genome-wide study are replicated in a large European cohort. Journal of Psychiatric Research 44, 748753.Google Scholar
Avissar, S, Schreiber, G (2002). Toward molecular diagnostics of mood disorders in psychiatry. Trends in Molecular Medicine 8, 294300.Google Scholar
Baum, AE, Akula, N, Cabanero, M, Cardona, I, Corona, W, Klemens, B, Schulze, TG, Cichon, S, Rietschel, M, Nothen, MM, Georgi, A, Schumacher, J, Schwarz, M, Abou Jamra, R, Hofels, S, Propping, P, Satagopan, J, Detera-Wadleigh, SD, Hardy, J, McMahon, FJ (2008). A genome-wide association study implicates diacylglycerol kinase eta (DGKH) and several other genes in the etiology of bipolar disorder. Molecular Psychiatry 13, 197–107.Google Scholar
Bebbington, PE, Bhugra, D, Brugha, T, Singleton, N, Farrell, M, Jenkins, R, Lewis, G, Meltzer, H (2004). Psychosis, victimisation and childhood disadvantage: evidence from the second British National Survey of Psychiatric Morbidity. British Journal of Psychiatry 185, 220226.Google Scholar
Bergmann, Ø, Haukvik, UK, Brown, AA, Rimol, LM, Hartberg, CB, Athanasiu, L, Melle, I, Djurovic, S, Andreassen, OA, Dale, AM, Agartz, I (2013). ZNF804A and cortical thickness in schizophrenia and bipolar disorder. Psychiatry Research: Neuroimaging 212, 154157.Google Scholar
Berridge, MJ (1989). The Albert Lasker Medical Awards. Inositol trisphosphate, calcium, lithium, and cell signaling. Journal of the American Medical Association 262, 18341841.Google Scholar
Bigos, KL, Mattay, VS, Callicott, JH, Straub, RE, Vakkalanka, R, Kolachana, B, Hyde, TM, Lipska, BK, Kleinman, JE, Weinberger, DR (2010). Genetic variation in CACNA1C affects brain circuitries related to mental illness. Archives of General Psychiatry 67, 939945.Google Scholar
Bora, E, Yucel, M, Pantelis, C (2009). Theory of mind impairment in schizophrenia: meta-analysis. Schizophrenia Research 109, 19.Google Scholar
Braff, DL, Geyer, MA, Swerdlow, NR (2001). Human studies of prepulse inhibition of startle: normal subjects, patient groups, and pharmacological studies. Psychopharmacology 156, 234258.Google Scholar
Brennand, KJ, Gage, FH (2011). Concise review: the promise of human induced pluripotent stem cell-based studies of schizophrenia. Stem Cells 29, 19151922.Google Scholar
Brunet, E, Sarfati, Y, Hardy-Bayle, MC, Decety, J (2003). Abnormalities of brain function during a nonverbal theory of mind task in schizophrenia. Neuropsychologia 41, 15741582.Google Scholar
Button, KS, Ioannidis, JP, Mokrysz, C, Nosek, BA, Flint, J, Robinson, ES, Munafo, MR (2013). Power failure: why small sample size undermines the reliability of neuroscience. Nature Reviews Neuroscience 14, 365376.Google Scholar
Calkins, ME, Iacono, WG (2000). Eye movement dysfunction in schizophrenia: a heritable characteristic for enhancing phenotype definition. American Journal of Medical Genetics 97, 7276.Google Scholar
Callicott, JH, Bertolino, A, Mattay, VS, Langheim, FJ, Duyn, J, Coppola, R, Goldberg, TE, Weinberger, DR (2000). Physiological dysfunction of the dorsolateral prefrontal cortex in schizophrenia revisited. Cerebral Cortex 10, 10781092.Google Scholar
Canals, S, Beyerlein, M, Merkle, H, Logothetis, NK (2009). Functional MRI evidence for LTP-induced neural network reorganization. Current Biology 19, 398403.Google Scholar
Cannon, M, Jones, P (1996). Schizophrenia. Journal of Neurology Neurosurgery and Psychiatry 60, 604613.Google Scholar
Canuso, CM, Bossie, CA, Zhu, Y, Youssef, E, Dunner, DL (2008). Psychotic symptoms in patients with bipolar mania. Journal of Affective Disorders 111, 164169.Google Scholar
Cardno, AG, Marshall, EJ, Coid, B, Macdonald, AM, Ribchester, TR, Davies, NJ, Venturi, P, Jones, LA, Lewis, SW, Sham, PC, Gottesman, II, Farmer, AE, McGuffin, P, Reveley, AM, Murray, RM (1999). Heritability estimates for psychotic disorders: the Maudsley twin psychosis series. Archives of General Psychiatry 56, 162168.Google Scholar
Carp, J (2012). The secret lives of experiments: methods reporting in the fMRI literature. Neuroimage 63, 289300.Google Scholar
Cichon, S, Muhleisen, TW, Degenhardt, FA, Mattheisen, M, Miro, X, Strohmaier, J, Steffens, M, Meesters, C, Herms, S, Weingarten, M, Priebe, L, Haenisch, B, Alexander, M, Vollmer, J, Breuer, R, Schmal, C, Tessmann, P, Moebus, S, Wichmann, HE, Schreiber, S, Muller-Myhsok, B, Lucae, S, Jamain, S, Leboyer, M, Bellivier, F, Etain, B, Henry, C, Kahn, JP, Heath, S, Hamshere, M, O'Donovan, MC, Owen, MJ, Craddock, N, Schwarz, M, Vedder, H, Kammerer-Ciernioch, J, Reif, A, Sasse, J, Bauer, M, Hautzinger, M, Wright, A, Mitchell, PB, Schofield, PR, Montgomery, GW, Medland, SE, Gordon, SD, Martin, NG, Gustafsson, O, Andreassen, O, Djurovic, S, Sigurdsson, E, Steinberg, S, Stefansson, H, Stefansson, K, Kapur-Pojskic, L, Oruc, L, Rivas, F, Mayoral, F, Chuchalin, A, Babadjanova, G, Tiganov, AS, Pantelejeva, G, Abramova, LI, Grigoroiu-Serbanescu, M, Diaconu, CC, Czerski, PM, Hauser, J, Zimmer, A, Lathrop, M, Schulze, TG, Wienker, TF, Schumacher, J, Maier, W, Propping, P, Rietschel, M, Nothen, MM (2011). Genome-wide association study identifies genetic variation in neurocan as a susceptibility factor for bipolar disorder. American Journal of Human Genetics 88, 372381.Google Scholar
Cousijn, H, Rijpkema, M, Harteveld, A, Harrison, PJ, Fernandez, G, Franke, B, Arias-Vasquez, A (2012). Schizophrenia risk gene ZNF804A does not influence macroscopic brain structure: an MRI study in 892 volunteers. Molecular Psychiatry 17, 11551157.Google Scholar
Cumming, G (2014). The new statistics: why and how. Psychological Science 25, 729.Google Scholar
Curtis, D, Vine, AE, McQuillin, A, Bass, NJ, Pereira, A, Kandaswamy, R, Lawrence, J, Anjorin, A, Choudhury, K, Datta, SR, Puri, V, Krasucki, R, Pimm, J, Thirumalai, S, Quested, D, Gurling, HM (2011). Case-case genome-wide association analysis shows markers differentially associated with schizophrenia and bipolar disorder and implicates calcium channel genes. Psychiatric Genetics 21, 14.Google Scholar
Donohoe, G, Rose, E, Frodl, T, Morris, D, Spoletini, I, Adriano, F, Bernardini, S, Caltagirone, C, Bossu, P, Gill, M, Corvin, AP, Spalletta, G (2011). ZNF804A risk allele is associated with relatively intact gray matter volume in patients with schizophrenia. Neuroimage 54, 21322137.CrossRefGoogle ScholarPubMed
Dudbridge, F (2013). Power and predictive accuracy of polygenic risk scores. PLoS Genetics 9, e1003348.Google Scholar
Dudbridge, F, Gusnanto, A (2008). Estimation of significance thresholds for genomewide association scans. Genetic Epidemiology 32, 227234.Google Scholar
Erk, S, Meyer-Lindenberg, A, Schnell, K, Opitz von Boberfeld, C, Esslinger, C, Kirsch, P, Grimm, O, Arnold, C, Haddad, L, Witt, SH, Cichon, S, Nothen, MM, Rietschel, M, Walter, H (2010). Brain function in carriers of a genome-wide supported bipolar disorder variant. Archives of General Psychiatry 67, 803811.Google Scholar
Esslinger, C, Kirsch, P, Haddad, L, Mier, D, Sauer, C, Erk, S, Schnell, K, Arnold, C, Witt, SH, Rietschel, M, Cichon, S, Walter, H, Meyer-Lindenberg, A (2011). Cognitive state and connectivity effects of the genome-wide significant psychosis variant in ZNF804A. Neuroimage 54, 25142523.Google Scholar
Esslinger, C, Walter, H, Kirsch, P, Erk, S, Schnell, K, Arnold, C, Haddad, L, Mier, D, Opitz von Boberfeld, C, Raab, K, Witt, SH, Rietschel, M, Cichon, S, Meyer-Lindenberg, A (2009). Neural mechanisms of a genome-wide supported psychosis variant. Science 324, 605.Google Scholar
Faravelli, C, Guerrini Degl'Innocenti, B, Aiazzi, L, Incerpi, G, Pallanti, S (1990). Epidemiology of mood disorders: a community survey in Florence. Journal of Affective Disorders 20, 135141.CrossRefGoogle ScholarPubMed
Ferreira, MA, O'Donovan, MC, Meng, YA, Jones, IR, Ruderfer, DM, Jones, L, Fan, J, Kirov, G, Perlis, RH, Green, EK, Smoller, JW, Grozeva, D, Stone, J, Nikolov, I, Chambert, K, Hamshere, ML, Nimgaonkar, VL, Moskvina, V, Thase, ME, Caesar, S, Sachs, GS, Franklin, J, Gordon-Smith, K, Ardlie, KG, Gabriel, SB, Fraser, C, Blumenstiel, B, Defelice, M, Breen, G, Gill, M, Morris, DW, Elkin, A, Muir, WJ, McGhee, KA, Williamson, R, MacIntyre, DJ, MacLean, AW, St, CD, Robinson, M, Van Beck, M, Pereira, AC, Kandaswamy, R, McQuillin, A, Collier, DA, Bass, NJ, Young, AH, Lawrence, J, Ferrier, IN, Anjorin, A, Farmer, A, Curtis, D, Scolnick, EM, McGuffin, P, Daly, MJ, Corvin, AP, Holmans, PA, Blackwood, DH, Gurling, HM, Owen, MJ, Purcell, SM, Sklar, P, Craddock, N (2008). Collaborative genome-wide association analysis supports a role for ANK3 and CACNA1C in bipolar disorder. Nature Genetics 40, 10561058.Google Scholar
Franke, B, Vasquez, AA, Veltman, JA, Brunner, HG, Rijpkema, M, Fernandez, G (2010). Genetic variation in CACNA1C, a gene associated with bipolar disorder, influences brainstem rather than gray matter volume in healthy individuals. Biological Psychiatry 68, 586588.Google Scholar
Friston, K (2012). Ten ironic rules for non-statistical reviewers. Neuroimage 61, 13001310.Google Scholar
Girgenti, MJ, LoTurco, JJ, Maher, BJ (2012). ZNF804a regulates expression of the schizophrenia-associated genes PRSS16, COMT, PDE4B, and DRD2. PLoS ONE 7, e32404.Google Scholar
Gomez-Ospina, N, Tsuruta, F, Barreto-Chang, O, Hu, L, Dolmetsch, R (2006). The C terminus of the L-type voltage-gated calcium channel Ca(V)1.2 encodes a transcription factor. Cell 127, 591606.Google Scholar
Gottesman, II, Gould, TD (2003). The endophenotype concept in psychiatry: etymology and strategic intentions. American Journal of Psychiatry 160, 636645.Google Scholar
Gottesman, II, Laursen, TM, Bertelsen, A, Mortensen, PB (2010). Severe mental disorders in offspring with 2 psychiatrically ill parents. Archives of General Psychiatry 67, 252257.Google Scholar
Green, EK, Grozeva, D, Jones, I, Jones, L, Kirov, G, Caesar, S, Gordon-Smith, K, Fraser, C, Forty, L, Russell, E, Hamshere, ML, Moskvina, V, Nikolov, I, Farmer, A, McGuffin, P, Holmans, PA, Owen, MJ, O'Donovan, MC, Craddock, N (2010 a). The bipolar disorder risk allele at CACNA1C also confers risk of recurrent major depression and of schizophrenia. Molecular Psychiatry 15, 10161022.Google Scholar
Green, EK, Grozeva, D, Jones, I, Jones, L, Kirov, G, Caesar, S, Gordon-Smith, K, Fraser, C, Forty, L, Russell, E, Hamshere, ML, Moskvina, V, Nikolov, I, Farmer, A, McGuffin, P, Wellcome Trust Case Control C, Holmans, PA, Owen, MJ, O'Donovan, MC, Craddock, N (2010 b). The bipolar disorder risk allele at CACNA1C also confers risk of recurrent major depression and of schizophrenia. Molecular Psychiatry 15, 10161022.Google Scholar
Hariri, AR, Tessitore, A, Mattay, VS, Fera, F, Weinberger, DR (2002). The amygdala response to emotional stimuli: a comparison of faces and scenes. Neuroimage 17, 317323.Google Scholar
Haukvik, UK, Saetre, P, McNeil, T, Bjerkan, PS, Andreassen, OA, Werge, T, Jonsson, EG, Agartz, I (2010). An exploratory model for G × E interaction on hippocampal volume in schizophrenia; obstetric complications and hypoxia-related genes. Progress in Neuro-Psychopharmacology and Biological Psychiatry 34, 12591265.Google Scholar
Hill, MJ, Jeffries, AR, Dobson, RJ, Price, J, Bray, NJ (2012). Knockdown of the psychosis susceptibility gene ZNF804A alters expression of genes involved in cell adhesion. Human Molecular Genetics 21, 10181024.Google Scholar
Hirschhorn, JN, Daly, MJ (2005). Genome-wide association studies for common diseases and complex traits. Nature Reviews Genetics 6, 95108.Google Scholar
Hulshoff Pol, HE, Schnack, HG, Mandl, RC, Brans, RG, van Haren, NE, Baare, WF, van Oel, CJ, Collins, DL, Evans, AC, Kahn, RS (2006). Gray and white matter density changes in monozygotic and same-sex dizygotic twins discordant for schizophrenia using voxel-based morphometry. Neuroimage 31, 482488.Google Scholar
Ioannidis, JP (2005). Why most published research findings are false. PLoS Medicine 2, e124.Google Scholar
Jamison, KR (2000). Suicide and bipolar disorder. Journal of Clinical Psychiatry 61 (Suppl. 9), 4751.Google Scholar
Jogia, J, Ruberto, G, Lelli-Chiesa, G, Vassos, E, Maieru, M, Tatarelli, R, Girardi, P, Collier, D, Frangou, S (2011). The impact of the CACNA1C gene polymorphism on frontolimbic function in bipolar disorder. Molecular Psychiatry 16, 10701071.CrossRefGoogle ScholarPubMed
Judd, LL, Akiskal, HS, Schettler, PJ, Endicott, J, Maser, J, Solomon, DA, Leon, AC, Rice, JA, Keller, MB (2002). The long-term natural history of the weekly symptomatic status of bipolar I disorder. Archives of General Psychiatry 59, 530537.Google Scholar
Kempton, MJ, Ruberto, G, Vassos, E, Tatarelli, R, Girardi, P, Collier, D, Frangou, S (2009). Effects of the CACNA1C risk allele for bipolar disorder on cerebral gray matter volume in healthy individuals. American Journal of Psychiatry 166, 14131414.CrossRefGoogle ScholarPubMed
Kieseppa, T, Partonen, T, Haukka, J, Kaprio, J, Lonnqvist, J (2004). High concordance of bipolar I disorder in a nationwide sample of twins. American Journal of Psychiatry 161, 18141821.Google Scholar
Kirkbride, JB, Errazuriz, A, Croudace, TJ, Morgan, C, Jackson, D, Boydell, J, Murray, RM, Jones, PB (2012). Incidence of schizophrenia and other psychoses in England, 1950–2009: a systematic review and meta-analyses. PloS One 7, e31660.Google Scholar
Knapp, M, Mangalore, R, Simon, J (2004). The global costs of schizophrenia. Schizophrenia Bulletin 30, 279293.Google Scholar
Knight, HM, Pickard, BS, Maclean, A, Malloy, MP, Soares, DC, McRae, AF, Condie, A, White, A, Hawkins, W, McGhee, K, van Beck, M, MacIntyre, DJ, Starr, JM, Deary, IJ, Visscher, PM, Porteous, DJ, Cannon, RE, St Clair, D, Muir, WJ, Blackwood, DH (2009). A cytogenetic abnormality and rare coding variants identify ABCA13 as a candidate gene in schizophrenia, bipolar disorder, and depression. American Journal of Human Genetics 85, 833846.Google Scholar
Krug, A, Krach, S, Jansen, A, Nieratschker, V, Witt, SH, Shah, NJ, Nothen, MM, Rietschel, M, Kircher, T (2013). The effect of neurogranin on neural correlates of episodic memory encoding and retrieval. Schizophrenia Bulletin 39, 141150.Google Scholar
Krug, A, Nieratschker, V, Markov, V, Krach, S, Jansen, A, Zerres, K, Eggermann, T, Stocker, T, Shah, NJ, Treutlein, J, Muhleisen, TW, Kircher, T (2010). Effect of CACNA1C rs1006737 on neural correlates of verbal fluency in healthy individuals. Neuroimage 49, 18311836.Google Scholar
Kurian, SM, Le-Niculescu, H, Patel, SD, Bertram, D, Davis, J, Dike, C, Yehyawi, N, Lysaker, P, Dustin, J, Caligiuri, M, Lohr, J, Lahiri, DK, Nurnberger, JI Jr., Faraone, SV, Geyer, MA, Tsuang, MT, Schork, NJ, Salomon, DR, Niculescu, AB (2011). Identification of blood biomarkers for psychosis using convergent functional genomics. Molecular Psychiatry 16, 3758.Google Scholar
Kuswanto, CN, Woon, PS, Zheng, XB, Qiu, A, Sitoh, YY, Chan, YH, Liu, J, Williams, H, Ong, WY, Sim, K (2012). Genome-wide supported psychosis risk variant in ZNF804A gene and impact on cortico-limbic WM integrity in schizophrenia. American Journal of Medical Genetics. Part B: Neuropsychiatric Genetics 159B, 255262.Google Scholar
Lee, KW, Woon, PS, Teo, YY, Sim, K (2012). Genome wide association studies (GWAS) and copy number variation (CNV) studies of the major psychoses: what have we learnt? Neuroscience & Biobehavioral Reviews 36, 556571.Google Scholar
Lencz, T, Szeszko, PR, DeRosse, P, Burdick, KE, Bromet, EJ, Bilder, RM, Malhotra, AK (2010). A schizophrenia risk gene, ZNF804A, influences neuroanatomical and neurocognitive phenotypes. Neuropsychopharmacology 35, 22842291.Google Scholar
Li, X, Branch, CA, DeLisi, LE (2009). Language pathway abnormalities in schizophrenia: a review of fMRI and other imaging studies. Current Opinion in Psychiatry 22, 131139.Google Scholar
Lichtenstein, P, Yip, BH, Bjork, C, Pawitan, Y, Cannon, TD, Sullivan, PF, Hultman, CM (2009). Common genetic determinants of schizophrenia and bipolar disorder in Swedish families: a population-based study. Lancet 373, 234239.Google Scholar
Linden, DE, Lancaster, TM, Wolf, C, Baird, A, Jackson, MC, Johnston, SJ, Donev, R, Thome, J (2013). ZNF804A genotype modulates neural activity during working memory for faces. Neuropsychobiology 67, 8492.Google Scholar
Linke, J, Witt, SH, King, AV, Nieratschker, V, Poupon, C, Gass, A, Hennerici, MG, Rietschel, M, Wessa, M (2012). Genome-wide supported risk variant for bipolar disorder alters anatomical connectivity in the human brain. Neuroimage 59, 32883296.Google Scholar
Liu, Y, Ray, SK, Yang, XQ, Luntz-Leybman, V, Chiu, IM (1998). A splice variant of E2–2 basic helix-loop-helix protein represses the brain-specific fibroblast growth factor 1 promoter through the binding to an imperfect E-box. Journal of Biological Chemistry 273, 1926919276.Google Scholar
MacDonald, AW III, Thermenos, HW, Barch, DM, Seidman, LJ (2009). Imaging genetic liability to schizophrenia: systematic review of FMRI studies of patients’ nonpsychotic relatives. Schizophrenia Bulletin 35, 11421162.Google Scholar
Marwick, K, Hall, J (2008). Social cognition in schizophrenia: a review of face processing. British Medical Bulletin 88, 4358.Google Scholar
McIntosh, AM, Gow, A, Luciano, M, Davies, G, Liewald, DC, Harris, SE, Corley, J, Hall, J, Starr, JM, Porteous, DJ, Tenesa, A, Visscher, PM, Deary, IJ (2013). Polygenic risk for schizophrenia is associated with cognitive change between childhood and old age. Biological Psychiatry 73, 938943.Google Scholar
Meyer-Lindenberg, AS, Olsen, RK, Kohn, PD, Brown, T, Egan, MF, Weinberger, DR, Berman, KF (2005). Regionally specific disturbance of dorsolateral prefrontal-hippocampal functional connectivity in schizophrenia. Archives of General Psychiatry 62, 379386.Google Scholar
Miller, GA, Chapman, JP (2001). Misunderstanding analysis of covariance. Journal of Abnormal Psychology 110, 4048.Google Scholar
Moore, TH, Zammit, S, Lingford-Hughes, A, Barnes, TR, Jones, PB, Burke, M, Lewis, G (2007). Cannabis use and risk of psychotic or affective mental health outcomes: a systematic review. Lancet 370, 319328.Google Scholar
Mudge, J, Miller, NA, Khrebtukova, I, Lindquist, IE, May, GD, Huntley, JJ, Luo, S, Zhang, L, van Velkinburgh, JC, Farmer, AD, Lewis, S, Beavis, WD, Schilkey, FD, Virk, SM, Black, CF, Myers, MK, Mader, LC, Langley, RJ, Utsey, JP, Kim, RW, Roberts, RC, Khalsa, SK, Garcia, M, Ambriz-Griffith, V, Harlan, R, Czika, W, Martin, S, Wolfinger, RD, Perrone-Bizzozero, NI, Schroth, GP, Kingsmore, SF (2008). Genomic convergence analysis of schizophrenia: mRNA sequencing reveals altered synaptic vesicular transport in post-mortem cerebellum. PLoS ONE 3, e3625.Google Scholar
Murray, CJ, Lopez, AD (1997). Global mortality, disability, and the contribution of risk factors: Global Burden of Disease Study. Lancet 349, 14361442.Google Scholar
Must, A, Janka, Z, Horvath, S (2011). Schizophrenia, environment and epigenetics [in Hungarian]. Neuropsychopharmacologia Hungarica 13, 211217.Google Scholar
Nelson, MD, Saykin, AJ, Flashman, LA, Riordan, HJ (1998). Hippocampal volume reduction in schizophrenia as assessed by magnetic resonance imaging: a meta-analytic study. Archives of General Psychiatry 55, 433440.Google Scholar
Nicodemus, KK, Callicott, JH, Higier, RG, Luna, A, Nixon, DC, Lipska, BK, Vakkalanka, R, Giegling, I, Rujescu, D, St Clair, D, Muglia, P, Shugart, YY, Weinberger, DR (2010 a). Evidence of statistical epistasis between DISC1, CIT and NDEL1 impacting risk for schizophrenia: biological validation with functional neuroimaging. Human Genetics 127, 441452.Google Scholar
Nicodemus, KK, Law, AJ, Radulescu, E, Luna, A, Kolachana, B, Vakkalanka, R, Rujescu, D, Giegling, I, Straub, RE, McGee, K, Gold, B, Dean, M, Muglia, P, Callicott, JH, Tan, HY, Weinberger, DR (2010 b). Biological validation of increased schizophrenia risk with NRG1, ERBB4, and AKT1 epistasis via functional neuroimaging in healthy controls. Archives of General Psychiatry 67, 9911001.Google Scholar
Nyegaard, M, Overgaard, MT, Su, YQ, Hamilton, AE, Kwintkiewicz, J, Hsieh, M, Nayak, NR, Conti, M, Conover, CA, Giudice, LC (2010). Lack of functional pregnancy-associated plasma protein-A (PAPPA) compromises mouse ovarian steroidogenesis and female fertility. Biology of Reproduction 82, 11291138.Google Scholar
O'Donovan, MC, Craddock, N, Norton, N, Williams, H, Peirce, T, Moskvina, V, Nikolov, I, Hamshere, M, Carroll, L, Georgieva, L, Dwyer, S, Holmans, P, Marchini, JL, Spencer, CC, Howie, B, Leung, HT, Hartmann, AM, Moller, HJ, Morris, DW, Shi, Y, Feng, G, Hoffmann, P, Propping, P, Vasilescu, C, Maier, W, Rietschel, M, Zammit, S, Schumacher, J, Quinn, EM, Schulze, TG, Williams, NM, Giegling, I, Iwata, N, Ikeda, M, Darvasi, A, Shifman, S, He, L, Duan, J, Sanders, AR, Levinson, DF, Gejman, PV, Cichon, S, Nothen, MM, Gill, M, Corvin, A, Rujescu, D, Kirov, G, Owen, MJ, Buccola, NG, Mowry, BJ, Freedman, R, Amin, F, Black, DW, Silverman, JM, Byerley, WF, Cloninger, CR (2008). Identification of loci associated with schizophrenia by genome-wide association and follow-up. Nature Genetics 40, 10531055.Google Scholar
Ogilvie, AD, Morant, N, Goodwin, GM (2005). The burden on informal caregivers of people with bipolar disorder. Bipolar Disorder 7 (Suppl. 1), 2532.Google Scholar
Ohi, K, Hashimoto, R, Yasuda, Y, Nemoto, K, Ohnishi, T, Fukumoto, M, Yamamori, H, Umeda-Yano, S, Okada, T, Iwase, M, Kazui, H, Takeda, M (2012). Impact of the genome wide supported NRGN gene on anterior cingulate morphology in schizophrenia. PLoS ONE 7, e29780.Google Scholar
Paulus, FM, Bedenbender, J, Krach, S, Pyka, M, Krug, A, Sommer, J, Mette, M, Nothen, MM, Witt, SH, Rietschel, M, Kircher, T, Jansen, A (2014). Association of rs1006737 in CACNA1C with alterations in prefrontal activation and fronto-hippocampal connectivity. Human Brain Mapping 35, 11901200.Google Scholar
Paulus, FM, Krach, S, Bedenbender, J, Pyka, M, Sommer, J, Krug, A, Knake, S, Nothen, MM, Witt, SH, Rietschel, M, Kircher, T, Jansen, A (2013). Partial support for ZNF804A genotype-dependent alterations in prefrontal connectivity. Human Brain Mapping 34, 304313.Google Scholar
Pelayo-Teran, JM, Suarez-Pinilla, P, Chadi, N, Crespo-Facorro, B (2012). Gene-environment interactions underlying the effect of cannabis in first episode psychosis. Current Pharmaceutical Design 18, 50245035.Google Scholar
Perala, J, Suvisaari, J, Saarni, SI, Kuoppasalmi, K, Isometsa, E, Pirkola, S, Partonen, T, Tuulio-Henriksson, A, Hintikka, J, Kieseppa, T (2007). Lifetime prevalence of psychotic and bipolar I disorders in a general population. Archives of General Psychiatry 64, 19.Google Scholar
Perrier, E, Pompei, F, Ruberto, G, Vassos, E, Collier, D, Frangou, S (2011). Initial evidence for the role of CACNA1C on subcortical brain morphology in patients with bipolar disorder. European Psychiatry 26, 135137.Google Scholar
Petronis, A, Gottesman, II, Crow, TJ, DeLisi, LE, Klar, AJ, Macciardi, F, McInnis, MG, McMahon, FJ, Paterson, AD, Skuse, D, Sutherland, GR (2000). Psychiatric epigenetics: a new focus for the new century. Molecular Psychiatry 5, 342346.Google Scholar
Pohlack, ST, Nees, F, Ruttorf, M, Witt, SH, Nieratschker, V, Rietschel, M, Flor, H (2011). Risk variant for schizophrenia in the neurogranin gene impacts on hippocampus activation during contextual fear conditioning. Molecular Psychiatry 16, 10721073.Google Scholar
Prata, D, Mechelli, A, Kapur, S (2014). Clinically meaningful biomarkers for psychosis: a systematic and quantitative review. Neuroscience and Biobehavioral Reviews 45, 134141.Google Scholar
Prata, DP, Mechelli, A, Fu, CH, Picchioni, M, Toulopoulou, T, Bramon, E, Walshe, M, Murray, RM, Collier, DA, McGuire, P (2009). Epistasis between the DAT 3’ UTR VNTR and the COMT Val158Met SNP on cortical function in healthy subjects and patients with schizophrenia. Proceedings of the National Academy of Sciences USA 106, 1360013605.Google Scholar
Rasetti, R, Mattay, VS, Wiedholz, LM, Kolachana, BS, Hariri, AR, Callicott, JH, Meyer-Lindenberg, A, Weinberger, DR (2009). Evidence that altered amygdala activity in schizophrenia is related to clinical state and not genetic risk. American Journal of Psychiatry 166, 216225.Google Scholar
Rasetti, R, Sambataro, F, Chen, Q, Callicott, JH, Mattay, VS, Weinberger, DR (2011). Altered cortical network dynamics: a potential intermediate phenotype for schizophrenia and association with ZNF804A. Archives of General Psychiatry 68, 12071217.Google Scholar
Rasetti, R, Weinberger, DR (2011). Intermediate phenotypes in psychiatric disorders. Current Opinion in Genetics and Development 21, 340348.Google Scholar
Rose, EJ, Morris, DW, Fahey, C, Robertson, IH, Greene, C, O'Doherty, J, Newell, FN, Garavan, H, McGrath, J, Bokde, A, Tropea, D, Gill, M, Corvin, AP, Donohoe, G (2012). The effect of the neurogranin schizophrenia risk variant rs12807809 on brain structure and function. Twin Research and Human Genetics 15, 296303.Google Scholar
Roussos, P, Katsel, P, Davis, KL, Bitsios, P, Giakoumaki, SG, Jogia, J, Rozsnyai, K, Collier, D, Frangou, S, Siever, LJ, Haroutunian, V (2012). Molecular and genetic evidence for abnormalities in the nodes of Ranvier in schizophrenia. Archives of General Psychiatry 69, 715.Google Scholar
Russell, TA, Rubia, K, Bullmore, ET, Soni, W, Suckling, J, Brammer, MJ, Simmons, A, Williams, SC, Sharma, T (2000). Exploring the social brain in schizophrenia: left prefrontal underactivation during mental state attribution. American Journal of Psychiatry 157, 20402042.Google Scholar
Schultz, CC, Muhleisen, TW, Nenadic, I, Koch, K, Wagner, G, Schachtzabel, C, Siedek, F, Nothen, MM, Rietschel, M, Deufel, T, Kiehntopf, M, Cichon, S, Reichenbach, JR, Sauer, H, Schlosser, RG (2014). Common variation in NCAN, a risk factor for bipolar disorder and schizophrenia, influences local cortical folding in schizophrenia. Psychological Medicine 44, 811820 . Google Scholar
Sims, R, Hollingworth, P, Moskvina, V, Dowzell, K, O'Donovan, MC, Powell, J, Lovestone, S, Brayne, C, Rubinsztein, D, Owen, MJ, Williams, J, Abraham, R (2009). Evidence that variation in the oligodendrocyte lineage transcription factor 2 (OLIG2) gene is associated with psychosis in Alzheimer's disease. Neuroscience Letters 461, 5459.Google Scholar
Soeiro-de-Souza, MG, Otaduy, MC, Dias, CZ, Bio, DS, Machado-Vieira, R, Moreno, RA (2012). The impact of the CACNA1C risk allele on limbic structures and facial emotions recognition in bipolar disorder subjects and healthy controls. Journal of Affective Disorders 141, 94101.Google Scholar
Sprong, M, Schothorst, P, Vos, E, Hox, J, van Engeland, H (2007). Theory of mind in schizophrenia: meta-analysis. British Journal of Psychiatry 191, 513.Google Scholar
Sprooten, E, McIntosh, AM, Lawrie, SM, Hall, J, Sussmann, JE, Dahmen, N, Konrad, A, Bastin, ME, Winterer, G (2012). An investigation of a genomewide supported psychosis variant in ZNF804A and white matter integrity in the human brain. Magnetic Resonance Imaging 30, 13731380.Google Scholar
Stefansson, H, Ophoff, RA, Steinberg, S, Andreassen, OA, Cichon, S, Rujescu, D, Werge, T, Pietilainen, OP, Mors, O, Mortensen, PB, Sigurdsson, E, Gustafsson, O, Nyegaard, M, Tuulio-Henriksson, A, Ingason, A, Hansen, T, Suvisaari, J, Lonnqvist, J, Paunio, T, Borglum, AD, Hartmann, A, Fink-Jensen, A, Nordentoft, M, Hougaard, D, Norgaard-Pedersen, B, Bottcher, Y, Olesen, J, Breuer, R, Moller, HJ, Giegling, I, Rasmussen, HB, Timm, S, Mattheisen, M, Bitter, I, Rethelyi, JM, Magnusdottir, BB, Sigmundsson, T, Olason, P, Masson, G, Gulcher, JR, Haraldsson, M, Fossdal, R, Thorgeirsson, TE, Thorsteinsdottir, U, Ruggeri, M, Tosato, S, Franke, B, Strengman, E, Kiemeney, LA, Melle, I, Djurovic, S, Abramova, L, Kaleda, V, Sanjuan, J, de Frutos, R, Bramon, E, Vassos, E, Fraser, G, Ettinger, U, Picchioni, M, Walker, N, Toulopoulou, T, Need, AC, Ge, D, Yoon, JL, Shianna, KV, Freimer, NB, Cantor, RM, Murray, R, Kong, A, Golimbet, V, Carracedo, A, Arango, C, Costas, J, Jonsson, EG, Terenius, L, Agartz, I, Petursson, H, Nothen, MM, Rietschel, M, Matthews, PM, Muglia, P, Peltonen, L, St Clair, D, Goldstein, DB, Stefansson, K, Collier, DA (2009). Common variants conferring risk of schizophrenia. Nature 460, 744747.Google Scholar
Steinberg, S, de Jong, S, Irish Schizophrenia Genomics, C, Andreassen, OA, Werge, T, Borglum, AD, Mors, O, Mortensen, PB, Gustafsson, O, Costas, J, Pietilainen, OP, Demontis, D, Papiol, S, Huttenlocher, J, Mattheisen, M, Breuer, R, Vassos, E, Giegling, I, Fraser, G, Walker, N, Tuulio-Henriksson, A, Suvisaari, J, Lonnqvist, J, Paunio, T, Agartz, I, Melle, I, Djurovic, S, Strengman, E, Group, Jurgens, G, Glenthoj, B, Terenius, L, Hougaard, DM, Orntoft, T, Wiuf, C, Didriksen, M, Hollegaard, MV, Nordentoft, M, van Winkel, R, Kenis, G, Abramova, L, Kaleda, V, Arrojo, M, Sanjuan, J, Arango, C, Sperling, S, Rossner, M, Ribolsi, M, Magni, V, Siracusano, A, Christiansen, C, Kiemeney, LA, Veldink, J, van den Berg, L, Ingason, A, Muglia, P, Murray, R, Nothen, MM, Sigurdsson, E, Petursson, H, Thorsteinsdottir, U, Kong, A, Rubino, IA, De Hert, M, Rethelyi, JM, Bitter, I, Jonsson, EG, Golimbet, V, Carracedo, A, Ehrenreich, H, Craddock, N, Owen, MJ, O'Donovan, MC, Wellcome Trust Case Control C, Ruggeri, M, Tosato, S, Peltonen, L, Ophoff, RA, Collier, DA, St Clair, D, Rietschel, M, Cichon, S, Stefansson, H, Rujescu, D, Stefansson, K (2011). Common variants at VRK2 and TCF4 conferring risk of schizophrenia. Human Molecular Genetics 20, 40764081.Google Scholar
Steinberg, S, de Jong, S, Mattheisen, M, Costas, J, Demontis, D, Jamain, S, Pietilainen, OP, Lin, K, Papiol, S, Huttenlocher, J, Sigurdsson, E, Vassos, E, Giegling, I, Breuer, R, Fraser, G, Walker, N, Melle, I, Djurovic, S, Agartz, I, Tuulio-Henriksson, A, Suvisaari, J, Lonnqvist, J, Paunio, T, Olsen, L, Hansen, T, Ingason, A, Pirinen, M, Strengman, E, Hougaard, DM, Orntoft, T, Didriksen, M, Hollegaard, MV, Nordentoft, M, Abramova, L, Kaleda, V, Arrojo, M, Sanjuan, J, Arango, C, Etain, B, Bellivier, F, Meary, A, Schurhoff, F, Szoke, A, Ribolsi, M, Magni, V, Siracusano, A, Sperling, S, Rossner, M, Christiansen, C, Kiemeney, LA, Franke, B, van den Berg, LH, Veldink, J, Curran, S, Bolton, P, Poot, M, Staal, W, Rehnstrom, K, Kilpinen, H, Freitag, CM, Meyer, J, Magnusson, P, Saemundsen, E, Martsenkovsky, I, Bikshaieva, I, Martsenkovska, I, Vashchenko, O, Raleva, M, Paketchieva, K, Stefanovski, B, Durmishi, N, Pejovic Milovancevic, M, Lecic Tosevski, D, Silagadze, T, Naneishvili, N, Mikeladze, N, Surguladze, S, Vincent, JB, Farmer, A, Mitchell, PB, Wright, A, Schofield, PR, Fullerton, JM, Montgomery, GW, Martin, NG, Rubino, IA, van Winkel, R, Kenis, G, De Hert, M, Rethelyi, JM, Bitter, I, Terenius, L, Jonsson, EG, Bakker, S, van Os, J, Jablensky, A, Leboyer, M, Bramon, E, Powell, J, Murray, R, Corvin, A, Gill, M, Morris, D, O'Neill, FA, Kendler, K, Riley, B, Craddock, N, Owen, MJ, O'Donovan, MC, Thorsteinsdottir, U, Kong, A, Ehrenreich, H, Carracedo, A, Golimbet, V, Andreassen, OA, Borglum, AD, Mors, O, Mortensen, PB, Werge, T, Ophoff, RA, Nothen, MM, Rietschel, M, Cichon, S, Ruggeri, M, Tosato, S, Palotie, A, St Clair, D, Rujescu, D, Collier, DA, Stefansson, H, Stefansson, K (2014). Common variant at 16p11.2 conferring risk of psychosis. Molecular Psychiatry 19, 108114.Google Scholar
Stephan, KE, Baldeweg, T, Friston, KJ (2006). Synaptic plasticity and dysconnection in schizophrenia. Biological Psychiatry 59, 929939.Google Scholar
Szadoczky, E, Papp, Z, Vitrai, J, Rihmer, Z, Furedi, J (1998). The prevalence of major depressive and bipolar disorders in Hungary. Results from a national epidemiologic survey. Journal of Affective Disorders 50, 153162.Google Scholar
ten Have, M, Vollebergh, W, Bijl, R, Nolen, WA (2002). Bipolar disorder in the general population in The Netherlands (prevalence, consequences and care utilisation): results from The Netherlands Mental Health Survey and Incidence Study (NEMESIS). Journal of Affective Disorders 68, 203213.Google Scholar
Tesli, M, Egeland, R, Sonderby, IE, Haukvik, UK, Bettella, F, Hibar, DP, Thompson, PM, Rimol, LM, Melle, I, Agartz, I, Djurovic, S, Andreassen, OA (2013 a). No evidence for association between bipolar disorder risk gene variants and brain structural phenotypes. Journal of Affective Disorders 151, 291297.Google Scholar
Tesli, M, Skatun, KC, Ousdal, OT, Brown, AA, Thoresen, C, Agartz, I, Melle, I, Djurovic, S, Jensen, J, Andreassen, OA (2013 b). CACNA1C risk variant and amygdala activity in bipolar disorder, schizophrenia and healthy controls. PLoS ONE 8, e56970.Google Scholar
Thimm, M, Kircher, T, Kellermann, T, Markov, V, Krach, S, Jansen, A, Zerres, K, Eggermann, T, Stocker, T, Shah, NJ, Nothen, MM, Rietschel, M, Witt, SH, Mathiak, K, Krug, A (2011). Effects of a CACNA1C genotype on attention networks in healthy individuals. Psychological Medicine 41, 15511561.Google Scholar
Thirion, B, Pinel, P, Meriaux, S, Roche, A, Dehaene, S, Poline, JB (2007). Analysis of a large fMRI cohort: statistical and methodological issues for group analyses. Neuroimage 35, 105120.CrossRefGoogle ScholarPubMed
Tohen, M, Waternaux, CM, Tsuang, MT (1990). Outcome in Mania. A 4-year prospective follow-up of 75 patients utilizing survival analysis. Archives of General Psychiatry 47, 11061111.Google Scholar
Voineskos, AN, Lerch, JP, Felsky, D, Tiwari, A, Rajji, TK, Miranda, D, Lobaugh, NJ, Pollock, BG, Mulsant, BH, Kennedy, JL (2011). The ZNF804A gene: characterization of a novel neural risk mechanism for the major psychoses. Neuropsychopharmacology 36, 18711878.Google Scholar
Walter, H, Schnell, K, Erk, S, Arnold, C, Kirsch, P, Esslinger, C, Mier, D, Schmitgen, MM, Rietschel, M, Witt, SH, Nothen, MM, Cichon, S, Meyer-Lindenberg, A (2011). Effects of a genome-wide supported psychosis risk variant on neural activation during a theory-of-mind task. Molecular Psychiatry 16, 462470.Google Scholar
Wang, F, McIntosh, AM, He, Y, Gelernter, J, Blumberg, HP (2011). The association of genetic variation in CACNA1C with structure and function of a frontotemporal system. Bipolar Disorder 13, 696700.CrossRefGoogle ScholarPubMed
Wassink, TH, Epping, EA, Rudd, D, Axelsen, M, Ziebell, S, Fleming, FW, Monson, E, Ho, BC, Andreasen, NC (2012). Influence of ZNF804a on brain structure volumes and symptom severity in individuals with schizophrenia. Archives of General Psychiatry 69, 885892.Google Scholar
Wei, Q, Kang, Z, Diao, F, Guidon, A, Wu, X, Zheng, L, Li, L, Guo, X, Hu, M, Zhang, J, Liu, C, Zhao, J (2013). No association of ZNF804A rs1344706 with white matter integrity in schizophrenia: a tract-based spatial statistics study. Neuroscience Letters 532, 6469.Google Scholar
Wei, Q, Kang, Z, Diao, F, Shan, B, Li, L, Zheng, L, Guo, X, Liu, C, Zhang, J, Zhao, J (2012). Association of the ZNF804A gene polymorphism rs1344706 with white matter density changes in Chinese schizophrenia. Progress in Neuro-Psychopharmacology and Biological Psychiatry 36, 122127.Google Scholar
Weinberger, DR (1999). Cell biology of the hippocampal formation in schizophrenia. Biological Psychiatry 45, 395402.Google Scholar
Wessa, M, Linke, J, Witt, SH, Nieratschker, V, Esslinger, C, Kirsch, P, Grimm, O, Hennerici, MG, Gass, A, King, AV, Rietschel, M (2010). The CACNA1C risk variant for bipolar disorder influences limbic activity. Molecular Psychiatry 15, 11261127.Google Scholar
Whalley, HC, McKirdy, J, Romaniuk, L, Sussmann, J, Johnstone, EC, Wan, HI, McIntosh, AM, Lawrie, SM, Hall, J (2009). Functional imaging of emotional memory in bipolar disorder and schizophrenia. Bipolar Disorder 11, 840856.Google Scholar
Whalley, HC, Papmeyer, M, Romaniuk, L, Johnstone, EC, Hall, J, Lawrie, SM, Sussmann, JE, McIntosh, AM (2012). Effect of variation in diacylglycerol kinase eta (DGKH) gene on brain function in a cohort at familial risk of bipolar disorder. Neuropsychopharmacology 37, 919928.Google Scholar
Williams, HJ, Craddock, N, Russo, G, Hamshere, ML, Moskvina, V, Dwyer, S, Smith, RL, Green, E, Grozeva, D, Holmans, P, Owen, MJ, O'Donovan, MC (2011 a). Most genome-wide significant susceptibility loci for schizophrenia and bipolar disorder reported to date cross-traditional diagnostic boundaries. Human Molecular Genetics 20, 387391.Google Scholar
Williams, HJ, Norton, N, Dwyer, S, Moskvina, V, Nikolov, I, Carroll, L, Georgieva, L, Williams, NM, Morris, DW, Quinn, EM, Giegling, I, Ikeda, M, Wood, J, Lencz, T, Hultman, C, Lichtenstein, P, Thiselton, D, Maher, BS, Malhotra, AK, Riley, B, Kendler, KS, Gill, M, Sullivan, P, Sklar, P, Purcell, S, Nimgaonkar, VL, Kirov, G, Holmans, P, Corvin, A, Rujescu, D, Craddock, N, Owen, MJ, O'Donovan, MC (2011 b). Fine mapping of ZNF804A and genome-wide significant evidence for its involvement in schizophrenia and bipolar disorder. Molecular Psychiatry 16, 429441.Google Scholar
Wirgenes, KV, Sonderby, IE, Haukvik, UK, Mattingsdal, M, Tesli, M, Athanasiu, L, Sundet, K, Rossberg, JI, Dale, AM, Brown, AA, Agartz, I, Melle, I, Djurovic, S, Andreassen, OA (2012). TCF4 sequence variants and mRNA levels are associated with neurodevelopmental characteristics in psychotic disorders. Transl Psychiatry 2, e112.Google Scholar
Wright, IC, Rabe-Hesketh, S, Woodruff, PW, David, AS, Murray, RM, Bullmore, ET (2000). Meta-analysis of regional brain volumes in schizophrenia. American Journal of Psychiatry 157, 1625.Google Scholar
Yang, J, Lee, SH, Goddard, ME, Visscher, PM. (2011) GCTA: a tool for genome-wide complex trait analysis. The American Journal of Human Genetics 88, 7682.Google Scholar
Yurgelun-Todd, DA, Gruber, SA, Kanayama, G, Killgore, WD, Baird, AA, Young, AD (2000). fMRI during affect discrimination in bipolar affective disorder. Bipolar Disord 2, 237248.Google Scholar
Supplementary material: File

Gurung and Prata supplementary material

Tables S1 and S2

Download Gurung and Prata supplementary material(File)
File 244.9 KB