Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-24T01:14:32.513Z Has data issue: false hasContentIssue false

Treatment selection in borderline personality disorder between dialectical behavior therapy and psychodynamic psychiatric management

Published online by Cambridge University Press:  24 March 2020

John R. Keefe*
Affiliation:
Department of Psychiatry, Weill Medical College of Cornell University, New York, NY, USA
Thomas T. Kim
Affiliation:
Department of Psychology, University of Pennsylvania, Philadelphia, PA, USA
Robert J. DeRubeis
Affiliation:
Department of Psychology, University of Pennsylvania, Philadelphia, PA, USA
David L. Streiner
Affiliation:
Department of Psychiatry & Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
Paul S. Links
Affiliation:
Department of Psychiatry & Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada
Shelley F. McMain
Affiliation:
Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada Borderline Personality Disorder Clinic, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
*
Author for correspondence: John R. Keefe, E-mail: [email protected], [email protected]

Abstract

Background

No evidence-based therapy for borderline personality disorder (BPD) exhibits a clear superiority. However, BPD is highly heterogeneous, and different patients may specifically benefit from the interventions of a particular treatment.

Methods

From a randomized trial comparing a year of dialectical behavior therapy (DBT) to general psychiatric management (GPM) for BPD, long-term (2-year-post) outcome data and patient baseline variables (n = 156) were used to examine individual and combined patient-level moderators of differential treatment response. A two-step bootstrapped and partially cross-validated moderator identification process was employed for 20 baseline variables. For identified moderators, 10-fold bootstrapped cross-validated models estimated response to each therapy, and long-term outcomes were compared for patients randomized to their model-predicted optimal v. non-optimal treatment.

Results

Significant moderators surviving the two-step process included psychiatric symptom severity, BPD impulsivity symptoms (both GPM > DBT), dependent personality traits, childhood emotional abuse, and social adjustment (all DBT > GPM). Patients randomized to their model-predicted optimal treatment had significantly better long-term outcomes (d = 0.36, p = 0.028), especially if the model had a relatively stronger (top 60%) prediction for that patient (d = 0.61, p = 0.004). Among patients with a stronger prediction, this advantage held even when applying a conservative statistical check (d = 0.46, p = 0.043).

Conclusions

Patient characteristics influence the degree to which they respond to two treatments for BPD. Combining information from multiple moderators may help inform providers and patients as to which treatment is the most likely to lead to long-term symptom relief. Further research on personalized medicine in BPD is needed.

Type
Original Article
Copyright
Copyright © The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

American Psychiatric Association Practice Guidelines (2001). Practice guideline for the treatment of patients with borderline personality disorder. American Journal of Psychiatry, 158(10 Suppl), 152. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/11665545.Google Scholar
Austin, P. C., & Tu, J. V. (2004). Bootstrap methods for developing predictive models. The American Statistician, 58(2), 131137. doi:10.1198/0003130043277.CrossRefGoogle Scholar
Beck, A. T., Steer, R. A., Ball, R., & Ranieri, W. (1996). Comparison of Beck Depression Inventories-IA and -II in psychiatric outpatients. Journal of Personality Assessment, 67(3), 588597. doi:10.1207/s15327752jpa6703_13.CrossRefGoogle ScholarPubMed
Berk, R. A. (2008). Statistical learning from a regression perspective (Vol. 14). New York, NY: Springer.Google Scholar
Bernstein, D. P., Stein, J. A., Newcomb, M. D., Walker, E., Pogge, D., Ahluvalia, T., … Zule, W. (2003). Development and validation of a brief screening version of the Childhood Trauma Questionnaire. Child Abuse & Neglect, 27(2), 169190. doi:10.1016/S0145-2134(02)00541-0.CrossRefGoogle ScholarPubMed
Chekroud, A. M., Zotti, R. J., Shehzad, Z., Gueorguieva, R., Johnson, M. K., Trivedi, M. H., … Corlett, P. R. (2016). Cross-trial prediction of treatment outcome in depression: A machine learning approach. The Lancet Psychiatry, 3(3), 243250. doi:10.1016/S2215-0366(15)00471-X.CrossRefGoogle ScholarPubMed
Cohen, Z. D., & DeRubeis, R. J. (2018). Treatment selection in depression. Annual Review of Clinical Psychology, 14(1), 209236. doi:10.1146/annurev-clinpsy-050817-084746.CrossRefGoogle ScholarPubMed
Cristea, I. A., Gentili, C., Cotet, C. D., Palomba, D., Barbui, C., & Cuijpers, P. (2017). Efficacy of psychotherapies for borderline personality disorder: A systematic review and meta-analysis. JAMA Psychiatry, 74(4), 319328. doi:10.1001/jamapsychiatry.2016.4287.CrossRefGoogle ScholarPubMed
Crowell, S. E., Beauchaine, T. P., & Linehan, M. M. (2009). A biosocial developmental model of borderline personality: Elaborating and extending Linehan's theory. Psychological Bulletin, 135(3), 495510. doi:10.1037/a0015616.CrossRefGoogle ScholarPubMed
Davidson, A. C., & Hinkley, D. V. (1997). Bootstrap methods and their applications. New York, NY: Cambridge University Press.CrossRefGoogle Scholar
Delgadillo, J., & Gonzalez Salas Duhne, P. (2020). Targeted prescription of cognitive–behavioral therapy versus person-centered counseling for depression using a machine learning approach. Journal of Consulting and Clinical Psychology, 88(1), 1424. doi: 10.1037/ccp0000476.CrossRefGoogle ScholarPubMed
Derogatis, L. R. (1992). SCL-90-R, administration, scoring and procedures manual-II for the R(evised) version and other instruments of the Psychopathology Rating Scale Series. Townson: Clinical Psychometric Research.Google Scholar
Derogatis, L. R., & Unger, R. (2010). Symptom checklist-90-revised. In Weiner, I. B. & Craighead, W. E. (Eds.), The Corsini Encyclopedia of Psychology. New York, NY: John Wiley & Sons, Inc.Google Scholar
DeRubeis, R. J., Cohen, Z. D., Forand, N. R., Fournier, J. C., Gelfand, L. A., & Lorenzo-Luaces, L. (2014). The personalized advantage index: Translating research on prediction into individualized treatment recommendations. A demonstration. PLoS ONE, 9(1), e83875. doi:10.1371/journal.pone.0083875.CrossRefGoogle ScholarPubMed
DeRubeis, R. J., Gelfand, L. A., German, R. E., Fournier, J. C., & Forand, N. R. (2014). Understanding processes of change: How some patients reveal more than others – and some groups of therapists less – about what matters in psychotherapy. Psychotherapy Research, 24(3), 419428. doi:10.1080/10503307.2013.838654.CrossRefGoogle ScholarPubMed
Diamond, D., Levy, K. N., Clarkin, J. F., Fischer-Kern, M., Cain, N. M., Doering, S., … Buchheim, A. (2014). Attachment and mentalization in female patients with comorbid narcissistic and borderline personality disorder. Personality Disorders: Theory, Research, and Treatment, 5(4), 428433. doi:10.1037/per0000065.CrossRefGoogle ScholarPubMed
Driessen, E., Smits, N., Dekker, J. J. M., Peen, J., Don, F. J., Kool, S., … Van, H. L. (2016). Differential efficacy of cognitive behavioral therapy and psychodynamic therapy for major depression: A study of prescriptive factors. Psychological Medicine, 46(4), 731744. doi:10.1017/S0033291715001853.CrossRefGoogle ScholarPubMed
First, M., Gibbon, M., Spitzer, R. L., & Williams, J. (2002). User's guide for the SCID-I: Structured clinical interview for DSM-IV-TR Axis I Disorders (Research version). New York, NY: Biometrics Research.Google Scholar
Fisher, A. J. (2015). Toward a dynamic model of psychological assessment: Implications for personalized care. Journal of Consulting and Clinical Psychology, 83(4), 825836. doi:10.1037/ccp0000026.CrossRefGoogle Scholar
Garge, N. R., Bobashev, G., & Eggleston, B. (2013). Random forest methodology for model-based recursive partitioning: The mobForest package for R. BMC Bioinformatics, 14(1), 125. doi:10.1186/1471-2105-14-125.CrossRefGoogle ScholarPubMed
Garge, N., Eggleston, B., & Bobashev, G. (2013). mobForest: Random Forest methodology for model-based recursive partitioning (Version 1.2). Retrieved from https://cran.r-project.org/package=mobForest.Google Scholar
Gunderson, J. G. (2001). Borderline personality disorder: A clinical guide. Washington, DC: American Psychiatric Publishing.Google Scholar
Gunderson, J. G. (2016). The emergence of a generalist model to meet public health needs for patients with borderline personality disorder. American Journal of Psychiatry, 173(5), 452458. doi:10.1176/appi.ajp.2015.15070885.CrossRefGoogle ScholarPubMed
Gunderson, J. G., Stout, R. L., McGlashan, T. H., Shea, M. T., Morey, L. C., Grilo, C. M., … Skodol, A. E. (2011). Ten-year course of borderline personality disorder: Psychopathology and function from the collaborative longitudinal personality disorders study. Archives of General Psychiatry, 68(8), 827837. doi:10.1001/archgenpsychiatry.2011.37.CrossRefGoogle ScholarPubMed
Hirsh, J. B., Quilty, L. C., Bagby, R. M., & McMain, S. F. (2012). The relationship between agreeableness and the development of the working alliance in patients with borderline personality disorder. Journal of Personality Disorders, 26(4), 616627. doi:10.1521/pedi.2012.26.4.616.CrossRefGoogle ScholarPubMed
Hofmann, S. G., Curtiss, J., & McNally, R. J. (2016). A complex network perspective on clinical science. Perspectives on Psychological Science, 11(5), 597605. doi:10.1177/1745691616639283.CrossRefGoogle ScholarPubMed
Horowitz, L. M., Rosenberg, S. E., Baer, B. A., Ureno, G., & Villasenor, V. S. (1988). Inventory of interpersonal problems: Psychometric properties and clinical applications. Journal of Consulting and Clinical Psychology, 56(6), 885892.CrossRefGoogle ScholarPubMed
Karatzias, T., Cloitre, M., Maercker, A., Kazlauskas, E., Shevlin, M., Hyland, P., … Brewin, C. R. (2017). PTSD And Complex PTSD: ICD-11 updates on concept and measurement in the UK, USA, Germany and Lithuania. European Journal of Psychotraumatology, 8(Suppl 7), 1418103. doi:10.1080/20008198.2017.1418103.CrossRefGoogle ScholarPubMed
Keefe, J. R., & DeRubeis, R. J. (2019). Changing character: A narrative review of personality change in psychotherapies for personality disorder. Psychotherapy Research, 29(6), 752769. doi:10.1080/10503307.2018.1425930.CrossRefGoogle ScholarPubMed
Keefe, J. R., McMain, S. F., McCarthy, K. S., Zilcha-Mano, S., Dinger, U., Sahin, Z., … Barber, J. P. (2019). A meta-analysis of psychodynamic treatments for borderline and cluster C personality disorders. Personality Disorders. doi:10.1037/per0000382.Google ScholarPubMed
Keefe, J. R., Wiltsey Stirman, S., Cohen, Z. D., DeRubeis, R. J., Smith, B. N., & Resick, P. A. (2018). In rape trauma PTSD, patient characteristics indicate which trauma-focused treatment they are most likely to complete. Depression and Anxiety, 35(4), 330338. doi:10.1002/da.22731.CrossRefGoogle ScholarPubMed
Koutsouleris, N., Kahn, R. S., Chekroud, A. M., Leucht, S., Falkai, P., Wobrock, T., … Hasan, A. (2016). Multisite prediction of 4-week and 52-week treatment outcomes in patients with first-episode psychosis: A machine learning approach. The Lancet Psychiatry, 3(10), 935946. doi:10.1016/S2215-0366(16)30171-7.CrossRefGoogle ScholarPubMed
Kraemer, H. C. (2016). Messages for clinicians: Moderators and mediators of treatment outcome in randomized clinical trials. American Journal of Psychiatry, 173(7), 672679. doi:10.1176/appi.ajp.2016.15101333.CrossRefGoogle ScholarPubMed
Kuhn, M. (2008). Building predictive models in R using the caret package. Journal of Statistical Software, 28(5), 26. doi:10.18637/jss.v028.i05.CrossRefGoogle Scholar
Landes, S. J., Rodriguez, A. L., Smith, B. N., Matthieu, M. M., Trent, L. R., Kemp, J., & Thompson, C. (2017). Barriers, facilitators, and benefits of implementation of dialectical behavior therapy in routine care: Results from a national program evaluation survey in the Veterans Health Administration. Translational Behavioral Medicine, 7(4), 832844. doi:10.1007/s13142-017-0465-5.CrossRefGoogle ScholarPubMed
Leichsenring, F., Leibing, E., Kruse, J., New, A. S., & Leweke, F. (2011). Borderline personality disorder. The Lancet, 377(9759), 7484. doi:10.1016/S0140-6736(10)61422-5.CrossRefGoogle ScholarPubMed
Levy, K. N. (2005). The implications of attachment theory and research for understanding borderline personality disorder. Development and Psychopathology, 17(4), 959986. doi:10.1017/S0954579405050455.CrossRefGoogle ScholarPubMed
Levy, K. N., Meehan, K. B., Kelly, K. M., Reynoso, J. S., Weber, M., Clarkin, J. F., & Kernberg, O. F. (2006). Change in attachment patterns and reflective function in a randomized control trial of transference-focused psychotherapy for borderline personality disorder. Journal of Consulting and Clinical Psychology, 74(6), 10271040. doi:10.1037/0022-006x.74.6.1027.CrossRefGoogle Scholar
Linehan, M. M. (1993). Cognitive behavioral treatment of borderline personality disorder. New York, NY: Guilford.Google Scholar
Linehan, M., & Comtois, K. (1997). Lifetime parasuicide count. Seattle, WA: University of Washington.Google Scholar
Linehan, M. M., Korslund, K. E., Harned, M. S., Gallop, R. J., Lungu, A., Neacsiu, A. D., … Murray-Gregory, A. M. (2015). Dialectical behavior therapy for high suicide risk in individuals with borderline personality disorder: A randomized clinical trial and component analysis. JAMA Psychiatry, 72(5), 475482. doi:10.1001/jamapsychiatry.2014.3039.CrossRefGoogle ScholarPubMed
Links, P. S., Bergmans, Y., Novick, J., & LeGris, J. (2009). General psychiatric management for patients with borderline personality disorder (BPD): Clinician's manual. Toronto, Canada: University of Toronto.Google Scholar
Loranger, A. W. (1995). International personality disorder examination (IPDE) manual. White Plains, NY: Cornell Medical Centre.Google Scholar
McMain, S. F., Guimond, T., Barnhart, R., Habinski, L., & Streiner, D. L. (2017). A randomized trial of brief dialectical behaviour therapy skills training in suicidal patients suffering from borderline disorder. Acta Psychiatrica Scandinavica, 135(2), 138148. doi:10.1111/acps.12664.CrossRefGoogle ScholarPubMed
McMain, S. F., Guimond, T., Streiner, D. L., Cardish, R. J., & Links, P. S. (2012). Dialectical behavior therapy compared with general psychiatric management for borderline personality disorder: Clinical outcomes and functioning over a 2-year follow-up. American Journal of Psychiatry, 169(6), 650661. doi:10.1176/appi.ajp.2012.11091416.CrossRefGoogle ScholarPubMed
McMain, S. F., Links, P. S., Gnam, W. H., Guimond, T., Cardish, R. J., Korman, L., & Streiner, D. L. (2009). A randomized trial of dialectical behavior therapy versus general psychiatric management for borderline personality disorder. American Journal of Psychiatry, 166(12), 13651374. doi:10.1176/appi.ajp.2009.09010039.CrossRefGoogle ScholarPubMed
Neacsiu, A. D., Rizvi, S. L., & Linehan, M. M. (2010). Dialectical behavior therapy skills use as a mediator and outcome of treatment for borderline personality disorder. Behaviour Research and Therapy, 48(9), 832839. doi:10.1016/j.brat.2010.05.017.CrossRefGoogle ScholarPubMed
Poldrack, R. A., Huckins, G., & Varoquaux, G. (2019). Establishment of best practices for evidence for prediction: A review. JAMA Psychiatry. doi:10.1001/jamapsychiatry.2019.3671.Google Scholar
Rizopoulos, D. (2009). bootStepAIC: Bootstrap stepAIC (Version 1.2-0). Retrieved from https://cran.r-project.org/package=bootStepAIC.Google Scholar
Sahin, Z., Vinnars, B., Gorman, B. S., Wilczek, A., Åsberg, M., & Barber, J. P. (2018). Clinical severity as a moderator of outcome in psychodynamic and dialectical behavior therapies for borderline personality disorder. Personality Disorders: Theory, Research, and Treatment, 9(5), 437446. doi:10.1037/per0000276.CrossRefGoogle ScholarPubMed
Spielberger, C. D., Krasner, S. S., & Solomon, E. P. (1988). The experience, expression and control of anger. In Janisse, M. P. (Ed.), Health psychology: Individual differences and stress (pp. 89108). New York, NY: Springer Verlag Publishers.CrossRefGoogle Scholar
Stekhoven, D. J., & Bühlmann, P. (2011). MissForest – non-parametric missing value imputation for mixed-type data. Bioinformatics (Oxford, England), 28(1), 112118. doi:10.1093/bioinformatics/btr597.CrossRefGoogle ScholarPubMed
Strobl, C., Boulesteix, A. L., Kneib, T., Augustin, T., & Zeileis, A. (2008). Conditional variable importance for random forests. BMC Bioinformatics, 9, 307. doi:10.1186/1471-2105-9-307.CrossRefGoogle ScholarPubMed
Wallace, M. L., Frank, E., & Kraemer, H. C. (2013). A novel approach for developing and interpreting treatment moderator profiles in randomized clinical TrialsNovel approach for treatment moderator ProfilesNovel approach for treatment moderator profiles. JAMA Psychiatry, 70(11), 12411247. doi:10.1001/jamapsychiatry.2013.1960.CrossRefGoogle ScholarPubMed
Weissman, M. M., & Bothwell, S. (1976). Assessment of social adjustment by patient self-report. Archives of General Psychiatry, 33(9), 11111115.CrossRefGoogle ScholarPubMed
Windle, E., Tee, H., Sabitova, A., Jovanovic, N., Priebe, S., & Carr, C. (2019). Association of patient treatment preference with dropout and clinical outcomes in adult psychosocial mental health interventions: A systematic review and meta-analysis. JAMA Psychiatry. doi:10.1001/jamapsychiatry.2019.3750.Google Scholar
Yeomans, F. E., Clarkin, J. F., & Kernberg, O. F. (2015). Transference-focused psychotherapy for borderline personality disorder. Washington, DC: American Psychiatric Publishing.Google Scholar
Yun, R. J., Stern, B. L., Lenzenweger, M. F., & Tiersky, L. A. (2013). Refining personality disorder subtypes and classification using finite mixture modeling. Personality Disorders: Theory, Research, and Treatment, 4(2), 121128. doi:10.1037/a0029944.CrossRefGoogle ScholarPubMed
Zanarini, M. C., Vujanovic, A. A., Parachini, E. A., Boulanger, J. L., Frankenburg, F. R., & Hennen, J. (2003). Zanarini rating scale for borderline personality disorder (ZAN-BPD): A continuous measure of DSM-IV borderline psychopathology. Journal of Personality Disorders, 17(3), 233242.CrossRefGoogle ScholarPubMed
Zilcha-Mano, S., Keefe, J. R., Chui, H., Rubin, A., Barrett, M. S., & Barber, J. P. (2016). Reducing dropout in treatment for depression: Translating dropout predictors into individualized treatment recommendations. Journal of Clinical Psychiatry, 77(12), e1584e1590. doi:10.4088/JCP.15m10081.CrossRefGoogle ScholarPubMed
Supplementary material: File

Keefe et al. supplementary material

Keefe et al. supplementary material

Download Keefe et al. supplementary material(File)
File 14.7 KB