Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-07T15:35:52.953Z Has data issue: false hasContentIssue false

Transmitter amines in depression1

Published online by Cambridge University Press:  09 July 2009

Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Editorial
Copyright
Copyright © Cambridge University Press 1982

References

REFERENCES

Agren, H. (1980). Symptoms patterns in unipolar and bipolar depression correlating with monoamine metabolites in the cerebrospinal fluid. II. Suicide. Psychiatric Research 3, 225236.Google Scholar
Andrews, C. D., Fernando, J. C. R. & Curzon, G. (1982). Differential involvement of dopamine-containing tracts in 5-hydroxytryptamine – dependent behaviours caused by amphetamine in large doses. Neuropharmacology 21, 6368.Google Scholar
Antelman, S. M., Szechtman, H., Chin, P. & Fisher, A. E. (1975). Tail pinch-induced eating, gnawing and licking behaviour in rats: dependence on the nigrostriatal dopamine system. Brain Research 99, 319337.Google Scholar
Aprison, M. H., Takahashi, R. & Tachiki, K. (1978). Hypersensitive serotonergic receptors involved in clinical depression – a theory. In Neuropharmacology and Behaviour (ed. Haber, B. and Aprison, M. H.), pp. 2353. Plenum: New York.Google Scholar
Åsberg, M., Traskman, L. & Thoren, P. (1976). 5HIAA in the cerebrospinal fluid. A biochemical suicide predictor? Archives of General Psychiatry 33, 11931197.Google Scholar
Banki, C. M., Molnar, G. & Vojnik, M. (1981). Cerebrospinal fluid amine metabolites, tryptophan and clinical parameters in depression. Journal of Affective Disease 3, 9199.Google Scholar
Beaudet, A. & Descarries, L. (1978). The monoamine innervation of rat cerebral cortex: synaptic and non-synaptic axon terminals. Neuroscience 3, 851860.CrossRefGoogle Scholar
Berger, P. A., Faull, K. F., Kilkowski, J., Anderson, P. J., Kraemer, H., Davis, K. L. & Barchas, J. D. (1980). CSF monoamine metabolites in depression and schizophrenia. American Journal of Psychiatry 137, 174180.Google Scholar
Birkmayer, W. & Riederer, P. (1975). Biochemical post-mortem findings in depressed patients. Journal of Neural Transmission 37. 95109.Google Scholar
Brodie, B. B. & Shore, P. H. (1957). A concept for a role of serotonin and norepinephrine as chemical mediators in the brain. Annals of the New York Academy of Sciences 66, 631642.Google Scholar
Chiodo, L. A. & Antelman, S. M. (1980). Electroconvulsive shock: progressive dopamine autoreceptor subsensitivity independent of repeated treatment. Science 210, 799801.CrossRefGoogle ScholarPubMed
Coppen, A., Shaw, D. M. & Farrell, J. P. (1963). Potentiation of the anti-depressive effect of a monoamine-oxidase inhibitor by tryptophan. Lancet i, 7981.Google Scholar
Crawley, J. N., Maas, J. W. & Roth, R. H. (1980). Evidence against specificity of electrical stimulation of the nucleus locus coeruleus in activating the sympathetic nervous system in the rat. Brain Research 183, 301311.CrossRefGoogle ScholarPubMed
Curzon, G., Kantamaneni, B. D., Lader, M. H. & Greenwood, M. H. (1979). Tryptophan disposition in psychiatric patients. Psychological Medicine 9, 457463.Google Scholar
Curzon, G., Fernando, J. C. R. & Lees, A. J. (1980 a). Behaviour provoked by simultaneous release of dopamine and serotonin: possible relevance to psychotic behaviour. In Enzymes and Neurotransmitters in Mental Disease (ed. Usdin, E., Sourkes, T. L. and Youdim, M. B. H.), pp. 411430. Wiley: New York.Google Scholar
Curzon, G., Kantamaneni, B. D., Van Boxel, P., Gillman, P. K., Bartlett, J. R. & Bridges, P. K. (1980 b). Substances related to 5-hydroxytryptamine in plasma, and in lumbar and ventricular fluids of psychiatric patients. Acta psychiatrica scandinavica, Supplement 280, 319.Google Scholar
Fillion, G. & Fillion, M. P. (1981). Modulation of affinity of postsynaptic serotonin receptors by antidepressant drugs. Nature 292, 349351.Google Scholar
Fuller, R. W. & Molloy, B. B. (1974). Recent studies with 4-chloroamphetamine and some analogues. Advances in Biochemical Psychopharmacology 10, 195205.Google Scholar
Fuxe, K., Ogren, S. O., Agnati, L. F., Eneroth, P., Holm, A. C. & Andersson, K. (1981). Long term treatment with zimelidine leads to a reduction in 5-hydroxytryptamine neurotransmission within the central nervous system of the mouse and rat. Neuroscience Letters 21, 5762.Google Scholar
Gillman, P. K., Bartlett, J. R., Bridges, P. K., Hunt, A., Patel, A. J., Kantamaneni, B. D. & Curzon, G. (1981). Indolic substances in plasma, cerebrospinal fluid and frontal cortex of human subjects infused with saline or tryptophan. Journal of Neurochemistry 37, 410417.Google Scholar
Goodwin, F. K. & Post, R. M. (1975). Studies of amine metabolites in affective illness and schizophrenia: a comparative analysis. Research Publications of the Association for Research on Nervous and Mental Disease 54, 299332.Google Scholar
Green, A. R. (1980). Changes in monoamine function in rats after electroconvulsive shocks: possible mechanisms involved and their relevance to ECT. In The Biochemistry of Psychiatric Disturbances (ed. Curzon, G.), pp. 3552. Wiley: New York.Google Scholar
Green, A. R. & Deakin, J. F. W. (1980). Brain noradrenaline depletion prevents ECS-induced enhancement of serotonin and dopamine mediated behaviour. Nature 285, 232233.Google Scholar
Hall, H. & Ogren, S. O. (1981). Effects of antidepressant drugs on different receptors in the brain. European Journal of Pharmacology 70, 393407.Google Scholar
Hallberg, H., Almgren, O. & Svensson, T. H. (1981). Increased brain serotonergic and noradrenergic activity after repeated systemic administration of the beta-2 adrenoceptor agonist salbutamol, a putative antidepressant drug. Psychopharmacology 73, 201204.CrossRefGoogle ScholarPubMed
Handley, S. L., Dunn, R. L., Waldron, G. & Baker, J. M. (1980). Tryptophan, cortisol and puerperal mood. British Journal of Psychiatry 136, 498508.Google Scholar
Hokfelt, T., Johansson, O., Ljungdahl, A., Lundberg, J. M. & Schultzberg, M. (1980). Peptidergic neurones. Nature 284, 515521.CrossRefGoogle ScholarPubMed
Huet, P. M., Pomier-Layrargues, G., Duguay, L. & DuSouich, P. (1981). Blood–brain transport of tryptophan and phenylalanine: effect of portacaval shunt in dogs. American Journal of Physiology 241, G163169.Google Scholar
Hwang, E. C., Magnussen, I. & Van Woert, M. (1980). Effects of chronic fluoxetine administration on serotonin metabolism. Research Communications in Chemical Pathology and Pharmacology 29, 7998.Google Scholar
Jones, R. S. G. (1980). Enhancement of 5-hydroxytryptamine-induced behavioural effects following chronic administration of antidepressant drugs. Psychopharmacology 69, 307311.CrossRefGoogle ScholarPubMed
Jones, R. S. G. (1981). In vivo pharmacological studies on the interactions between tryptamine and 5-hydroxytryptamine. British Journal of Pharmacology 73, 485493.Google Scholar
Jouvet, M. (1977). Neuropharmacology of the sleep–waking cycle. In Handbook of Psychopharmacology, vol. 8 (ed. Iversen, L. L., Iversen, S. D. and Snyder, S. H.), pp. 233293. Plenum: New York.Google Scholar
Karoum, F., Wyatt, R. & Costa, E. (1974). Estimation of the contribution of peripheral and central noradrenergic neurones to urinary 3-methoxy-4-hydroxy-phenylglycol in the rat. Neuropharmacology 13, 165176.Google Scholar
Keller, K. J., Cascio, C. S., Butler, J. A. & Kurtzke, R. N. (1981). Differential effects of electroconvulsive shock and antidepressant drugs on serotonin-2 receptors in rat brain. European Journal of Pharmacology 69, 515518.Google Scholar
Kelly, P. H. (1977). Drug induced motor behaviour. In Handbook of Psychopharmacology, vol. 8 (ed. Iversen, L. L., Iversen, S. D. and Snyder, S. H.), pp. 295331. Plenum: New York.Google Scholar
Kennett, G. A. & Joseph, M. H. (1981). The functional importance of increased brain tryptophan in the serotonergic response to restraint stress. Neuropharmacology 20, 3943.Google Scholar
Lebrecht, U. & Nowak, J. Z. (1980). Effect of single and repeated electroconvulsive shock on serotonergic system in rat brain. II: Behavioural studies. Neuropharmacology 19, 10551061.Google Scholar
Lindberg, D., Ahlfors, U. G., Dencker, S. J., Fruensgaard, K., Hansten, S., Jensen, K., Ose, E. & Pinkanen, T. A. (1979). Symptom reduction in depression after treatment with L-tryptophan or imipramine: item analysis of Hamilton rating scale for depression. Acta psychiatrica scandinavica 60, 287294.Google Scholar
Lloyd, K. G., Farley, I. J., Deck, J. H. & Hornykiewicz, O. (1974). Serotonin and 5-hydroxyindoleacetic acid in discrete areas of the brain stem of suicide victims and control patients. Advances in Biochemical Psychopharmacology 11, 387397.Google Scholar
Maitre, L., Waldmeier, P. C., Greengrass, P. M., Jaeckel, J., Sedlacek, S. & Delini-Stula, A. (1975). Maprotiline – its position as an anti-depressant in the light of recent neuropharmacological and neurobiochemical findings. Journal of International Medical Research 3, Supplement 2, 215.Google Scholar
Maj, T., Gancarczyk, L., Gorszczyk, E. & Rawlow, A. (1977). Doxepin as a blocker of central serotonin receptors. Pharmako-psychiatric Neuro-Psychopharmakologie 10, 318324.CrossRefGoogle ScholarPubMed
Marsden, C. A. & Curzon, G. (1976). Studies on the behavioural effects of tryptophan and p-chlorophenylalanine. Neuropharmacology 15. 165171.Google Scholar
Marsden, C. A. & Curzon, G. (1979). The role of tryptamine in the behavioural effects of tranylcypromine + L-tryptophan. Neuropharmacology 18, 159164.Google Scholar
Moller, S. E., Kirk, L. & Honore, P. (1979). Free and total plasma tryptophan in endogenous depression. Journal of Affective Disorders 1, 6976.CrossRefGoogle ScholarPubMed
Moller, S. E., Kirk, L. & Honore, P. (1980). Relationship between plasma ratio of tryptophan to competing amino acids and the response to L-tryptophan treatment in endogeneously depressed patients. Journal of Affective Diseases 2, 4759.Google Scholar
Ogren, S. O., Fuxe, K., Agnati, L. F., Gustafsson, J. A., Jonsson, G. & Holm, A. C. (1979). Re-evaluation of the indoleamine hypothesis of depression. Evidence for a reduction of functional activity of central 5HT systems by antidepressant drugs. Journal of Neural Transmission 46, 85103.Google Scholar
Ogren, S. O., Fuxe, K. & Agnati, L. F. (1982). On the mechanism of action of antidepressant drugs: changes in 5HT receptor mechanisms leading to stabilization of 5HT neurotransmission. Trends in Neurosciences. (In the press.)Google Scholar
Osborne, N. N. (1981). Communication between neurones: current concepts. Neurochemistry International 3, 316.CrossRefGoogle ScholarPubMed
Post, R. M., Kotin, J., Goodwin, F. K. & Gordon, E. K. (1973). Psychomotor activity and cerebrospinal fluid amine metabolites in affective illness. American Journal of Psychiatry 130, 6772.Google Scholar
Post, R. M., Gerner, R. H., Carmon, J. S., Gillin, J. C., Jimerson, D. C., Goodwin, F. K. & Bunney, W. E. (1978). Effects of a dopamine agonist piribedil in depressed patients: relationship of pretreatment HVA to anti-depressant response. Archives of General Psychiatry 35, 609615.CrossRefGoogle Scholar
Post, R. M., Jimerson, D. C., Bunney, W. E. & Goodwin, F. K. (1980). Dopamine and mania: behavioural and biochemical effects of the dopamine receptor blocker pimozide. Psychopharmacology 67, 297305.CrossRefGoogle ScholarPubMed
Rosenthal, N. E., Davenport, Y., Cowdry, R. W., Webster, M. & Goodwin, F. K. (1980). Monoamine metabolites in cerebrospinal fluid of depressive subgroups. Psychiatry Research 2, 113119.Google Scholar
Ross, S. B., Hall, H., Renyi, A. L. & Westerlund, D. (1981). Effects of zimelidine on serotonergic and noradrenergic neurons after repeated administration in the rat. Psychopharmacology 72, 219225.Google Scholar
Schildkraut, J. J. (1973). Norepinephrine metabolism in the pathophysiology and classification of depressive and manic disorders. In Psychopathology and Psychopharmacology (ed. Cole, J. O., Freedman, A. M. and Friedhoff, A. J.), pp. 231249. Johns Hopkins University Press: Baltimore.Google Scholar
Sedvall, G., Fyro, B., Gallberg, B., Nyback, H., Wiesel, F. A. & Wode-Helgodt, B. (1980). Relationship in healthy volunteers between concentrations of monoamine metabolites in cerebrospinal fluid and family history of psychiatric morbidity. British Journal of Psychiatry 136, 366374.Google Scholar
Serra, G., Argiolas, A., Fadda, F., Melis, M. R. & Gessa, G. L. (1981). Repeated electroconvulsive shock prevents the sedative effect of small doses of apomorphine. Psychopharmacology 73, 194196.Google Scholar
Shaw, D. M., Tidmarsh, S. F. & Karagji, B. M. (1980). Tryptophan, affective disorder and stress. Journal of Affective Disorders 2, 321325.Google Scholar
Shopsin, B., Friedman, E. & Gershon, S. (1976). p-Chlorophenylalanine reversal of tranylcypromine effects in depressed patients. Archives of General Psychiatry 33, 811819.Google Scholar
Stein, G., Milton, F., Bebbington, P., Wood, K. & Coppen, A. (1976). Relationship between mood disturbances and free and total plasma tryptophan in postpartum women. British Medical Journal ii, 457.Google Scholar
Sulser, F. (1978). Functional aspects of the norepinephrine receptor coupled adenylate cyclase system in the limbic forebrain and its modification by drugs which precipitate or alleviate depression: molecular approaches to an understanding of affective disorders. Pharmakopsychiatrie Neuro-Psychopharmakologie 11, 4352.Google Scholar
Swade, C. & Coppen, A. (1980). Seasonal variations in biochemical factors related to depressive illness. Journal of Affective Disorders 2, 249255.Google Scholar
Van Praag, H. M. (1977). New evidence of serotonin deficient depression. Neuropsychobiology 3, 5663.Google Scholar
Van Praag, H. M. & De Haan, S. (1980). Depression vulnerability and 5-hydroxytryptophan prophylaxis. Psychiatry Research 3, 7583.Google Scholar
Van Praag, H. M., Kits, T. P., Schut, T. & Dijkstra, P. (1969). An attempt at indirect evaluation of the noradrenaline hypothesis. Results of a pilot study of the antidepressive qualities of p-chloro-N-methylamphetamine. Behavioural Neuropsychiatry 1, 1724.Google Scholar
Van Scheyen, J. D., Van Praag, H. M. & Korf, J. (1977). Controlled study comparing nomifensine and clomipramine in unipolar depression using the probenecid technique. British Journal of Clinical Pharmacology 4, 179S184S.Google Scholar
Waldbillig, R. J., Bartness, T. J. & Stanley, B. G. (1981). Disproportionate increases in locomotor activity in response to hormonal and photic stimulation following regional neurochemical depletion of serotonin. Brain Research 217, 7991.CrossRefGoogle Scholar
Waldmeier, P. C. (1981). Noradrenergic transmission in depression: under or overfunction? Pharmacopsychiatria 14, 39.Google Scholar
Wålinder, J., Skott, A., Carlsson, A., Nagy, A. & Roos, B. E. (1976). Potentiation of the antidepressant action of clomipramine by tryptophan. Archives of General Psychiatry 33, 13841389.Google Scholar
Wong, D. T. & Bymaster, F. P. (1981). Subsensitivity of serotonin receptors after long term treatment of rats with fluoxetine. Research Communications in Chemical Pathology and Pharmacology 32, 4151.Google Scholar