Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-24T06:25:46.251Z Has data issue: false hasContentIssue false

Thalamic dysconnectivity in the psychosis risk syndrome and early illness schizophrenia

Published online by Cambridge University Press:  15 March 2021

Susanna L. Fryer
Affiliation:
Department of Psychiatry, University of California, San Francisco, San Francisco, CA, USA San Francisco VA Healthcare System, San Francisco, CA, USA
Jamie M. Ferri
Affiliation:
San Francisco VA Healthcare System, San Francisco, CA, USA
Brian J. Roach
Affiliation:
San Francisco VA Healthcare System, San Francisco, CA, USA
Rachel L. Loewy
Affiliation:
Department of Psychiatry, University of California, San Francisco, San Francisco, CA, USA
Barbara K. Stuart
Affiliation:
Department of Psychiatry, University of California, San Francisco, San Francisco, CA, USA
Alan Anticevic
Affiliation:
Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA Department of Psychology, Yale University, New Haven, CT, USA
Judith M. Ford
Affiliation:
Department of Psychiatry, University of California, San Francisco, San Francisco, CA, USA San Francisco VA Healthcare System, San Francisco, CA, USA
Daniel H. Mathalon*
Affiliation:
Department of Psychiatry, University of California, San Francisco, San Francisco, CA, USA San Francisco VA Healthcare System, San Francisco, CA, USA
*
Author for correspondence: Daniel H. Mathalon, E-mail: [email protected]

Abstract

Background

Schizophrenia (SZ) is associated with thalamic dysconnectivity. Compared to healthy controls (HCs), individuals with SZ have hyperconnectivity with sensory regions, and hypoconnectivity with cerebellar, thalamic, and prefrontal regions. Despite replication of this pattern in chronically ill individuals, less is known about when these abnormalities emerge in the illness course and if they are present prior to illness onset.

Methods

Resting-state functional magnetic resonance imaging data were collected from psychosis risk syndrome (PRS) youth (n = 45), early illness SZ (ESZ) (n = 74) patients, and HCs (n = 85). Age-adjusted functional connectivity, seeded from the thalamus, was compared among the groups.

Results

Significant effects of group were observed in left and right middle temporal regions, left and right superior temporal regions, left cerebellum, and bilateral thalamus. Compared to HCs, ESZ demonstrated hyperconnectivity to all temporal lobe regions and reduced connectivity with cerebellar, anterior cingulate, and thalamic regions. Compared to HCs, PRS demonstrated hyperconnectivity with the left and right middle temporal regions, and hypoconnectivity with the cerebellar and other thalamic regions. Compared to PRS participants, ESZ participants were hyperconnected to temporal regions, but did not differ from PRS in hypoconnectivity with cerebellar and thalamic regions. Thalamic dysconnectivity was unrelated to positive symptom severity in ESZ or PRS groups.

Conclusions

PRS individuals demonstrated an intermediate level of thalamic dysconnectivity, whereas ESZ showed a pattern consistent with prior observations in chronic samples. These cross-sectional findings suggest that thalamic dysconnectivity may occur prior to illness onset and become more pronounced in early illness stages.

Type
Original Article
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Co-first authors.

References

Andreasen, N. C. (1984). The scale for the assessment of positive symptoms (SAPS). Iowa City, IA: University of Iowa.Google Scholar
Andreasen, N. C. (1999). A unitary model of schizophrenia: Bleuler's “fragmented phrene” as schizencephaly. Archives of General Psychiatry, 56(9), 781787. doi: 10.1001/archpsyc.56.9.781CrossRefGoogle ScholarPubMed
Andreasen, N. C. (1989). The scale for the assessment of negative symptoms (SANS): Conceptual and theoretical foundations. The British Journal of Psychiatry Supplement, 155(7), 4958. doi: 10.1192/S0007125000291496.CrossRefGoogle Scholar
Anticevic, A., Cole, M. W., Repovs, G., Murray, J. D., Brumbaugh, M. S., Winkler, A. M., … Glahn, D. C. (2014). Characterizing thalamo-cortical disturbances in schizophrenia and bipolar illness. Cerebral Cortex, 24(12), 31163130. doi: 10.1093/cercor/bht165.CrossRefGoogle ScholarPubMed
Anticevic, A., Haut, K., Murray, J. D., Repovs, G., Yang, G. J., Diehl, C., … Cannon, T. D. (2015). Association of thalamic dysconnectivity and conversion to psychosis in youth and young adults at elevated clinical risk. JAMA Psychiatry, 72(9), 882891. doi: 10.1001/jamapsychiatry.2015.0566CrossRefGoogle Scholar
Behzadi, Y., Restom, K., Liau, J., & Liu, T. T. (2007). A component based noise correction method (CompCor) for BOLD and perfusion based fMRI. NeuroImage, 37(1), 90101. doi: 10.1016/j.neuroimage.2007.04.042.CrossRefGoogle ScholarPubMed
Bernard, J. A., Orr, J. M., & Mittal, V. A. (2017). Cerebello-thalamo-cortical networks predict positive symptom progression in individuals at ultra-high risk for psychosis. NeuroImage: Clinical, 14, 622628. doi: 10.1016/j.nicl.2017.03.001.CrossRefGoogle ScholarPubMed
Biswal, B., Yetkin, F. Z., Haughton, V. M., & Hyde, J. S. (1995). Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magnetic Resonance in Medicine, 34(4), 537541. doi: 10.1002/mrm.1910340409.CrossRefGoogle ScholarPubMed
Cannon, T. D. (2015). Network dysconnectivity: A psychosis-triggering mechanism? Biological Psychiatry, 77(11), 927928. doi: 10.1016/j.biopsych.2015.03.019.CrossRefGoogle ScholarPubMed
Cannon, T. D., Cadenhead, K., Cornblatt, B., Woods, S. W., Addington, J., Walker, E., … Heinssen, R. (2008). Prediction of psychosis in youth at high clinical risk: A multisite longitudinal study in North America. Archives of General Psychiatry, 65(1), 2837. doi: 10.1001/archgenpsychiatry.2007.3CrossRefGoogle ScholarPubMed
Cao, H., Chén, O. Y., Chung, Y., Forsyth, J. K., McEwen, S. C., Gee, D. G., … Cannon, T. D. (2018). Cerebello-thalamo-cortical hyperconnectivity as a state-independent functional neural signature for psychosis prediction and characterization. Nature Communications, 9(1), 3836. doi: 10.1038/s41467-018-06350-7.CrossRefGoogle ScholarPubMed
Cheng, W., Palaniyappan, L., Li, M., Kendrick, K. M., Zhang, J., Luo, Q., … Feng, J. (2015). Voxel-based, brain-wide association study of aberrant functional connectivity in schizophrenia implicates thalamocortical circuitry. NPJ Schizophrenia, 1, 15016. doi: 10.1038/npjschz.2015.16CrossRefGoogle ScholarPubMed
Colibazzi, T., Yang, Z., Horga, G., Chao-Gan, Y., Corcoran, C. M., Klahr, K., … Peterson, B. S. (2017). Aberrant temporal connectivity in persons at clinical high risk for psychosis. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2(8), 696705. doi: 10.1016/j.bpsc.2016.12.008Google ScholarPubMed
Damaraju, E., Allen, E. A., Belger, A., Ford, J. M., McEwen, S., Mathalon, D. H., … Calhoun, V. D. (2014). Dynamic functional connectivity analysis reveals transient states of dysconnectivity in schizophrenia. NeuroImage: Clinical, 5, 298308. doi: 10.1016/j.nicl.2014.07.003CrossRefGoogle Scholar
Dandash, O., Fornito, A., Lee, J., Keefe, R. S., Chee, M. W., Adcock, R. A., … Harrison, B. J. (2014). Altered striatal functional connectivity in subjects with an at-risk mental state for psychosis. Schizophrenia Bulletin, 40(4), 904913. doi: 10.1093/schbul/sbt093CrossRefGoogle ScholarPubMed
Danivas, V., & Venkatasubramanian, G. (2013). Current perspectives on chlorpromazine equivalents: Comparing apples and oranges!. Indian Journal of Psychiatry, 55(2), 207208. doi: 10.4103/0019-5545.111475.Google Scholar
Fair, D. A., Bathula, D., Mills, K. L., Dias, T. G., Blythe, M. S., Zhang, D., … Nagel, B. J. (2010). Maturing thalamocortical functional connectivity across development. Frontiers in Systems Neuroscience, 4, 10. doi: 10.3389/fnsys.2010.00010Google ScholarPubMed
Feinberg, I. (1982). Schizophrenia: Caused by a fault in programmed synaptic elimination during adolescence? Journal of Psychiatric Research, 17(4), 319334. doi: 10.1016/0022-3956(82)90038-3.CrossRefGoogle ScholarPubMed
Ferri, J., Ford, J. M., Roach, B. J., Turner, J. A., van Erp, T. G., Voyvodic, J., … Mathalon, D. H. (2018). Resting-state thalamic dysconnectivity in schizophrenia and relationships with symptoms. Psychological Medicine, 48(15), 24922499. doi: 10.1017/S003329171800003XCrossRefGoogle ScholarPubMed
First, M. B., Spitzer, R. L., Gibbon, M., & Williams, J. B. (2002). Structured clinical interview for DSM-IV-TR axis I disorders, research version, patient edition. New York, NY: SCID-I/P.Google Scholar
Friston, K. J. (1998). The disconnection hypothesis. Schizophrenia Research, 30(2), 115125. doi: 10.1016/s0920-9964(97)00140-0.Google ScholarPubMed
Fryer, S. L., Jorgensen, K. W., Yetter, E. J., Daurignac, E. C., Watson, T. D., Shanbhag, H., … Mathalon, D. H. (2013b). Differential brain response to alcohol cue distractors across stages of alcohol dependence. Biological Psychology, 92(2), 282291. doi: 10.1016/j.biopsycho.2012.10.004CrossRefGoogle Scholar
Fryer, S. L., Roach, B. J., Wiley, K., Loewy, R. L., Ford, J. M., & Mathalon, D. H. (2016). Reduced amplitude of low-frequency brain oscillations in the psychosis risk syndrome and early illness schizophrenia. Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology, 41(9), 23882398. doi: 10.1038/npp.2016.51CrossRefGoogle ScholarPubMed
Fryer, S. L., Woods, S. W., Kiehl, K. A., Calhoun, V. D., Pearlson, G. D., Roach, B. J., … Mathalon, D. H. (2013a). Deficient suppression of default mode regions during working memory in individuals with early psychosis and at clinical high-risk for psychosis. Frontiers in Psychiatry, 4, 92. doi: 10.3389/fpsyt.2013.00092CrossRefGoogle Scholar
Giraldo-Chica, M., & Woodward, N. D. (2017). Review of thalamocortical resting-state fMRI studies in schizophrenia. Schizophrenia Research, 180, 5863. doi: 10.1016/j.schres.2016.08.005CrossRefGoogle Scholar
Guller, Y., Tononi, G., & Postle, B. R. (2012). Conserved functional connectivity but impaired effective connectivity of thalamocortical circuitry in schizophrenia. Brain Connectivity, 2(6), 311319. doi: 10.1089/brain.2012.0100CrossRefGoogle Scholar
Hollingshead, A. B., & Redlich, F. C. (1958). Social class and mental illness: Community study. New York: John Wiley & Sons Inc. doi:10.1037/10645-000.CrossRefGoogle Scholar
Hwang, K., Bertolero, M. A., Liu, W. B., & D'Esposito, M. (2017). The human thalamus is an integrative hub for functional brain networks. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 37(23), 55945607. doi: 10.1523/JNEUROSCI.0067-17.2017CrossRefGoogle ScholarPubMed
Kaufman, J., Birmaher, B., Brent, D., Rao, U., Flynn, C., Moreci, P., … Ryan, N. (1997). Schedule for affective disorders and schizophrenia for school-age children-present and lifetime version (K-SADS-PL): Initial reliability and validity data. Journal of the American Academy of Child and Adolescent Psychiatry, 36(7), 980988. doi: 10.1097/00004583-199707000-00021.CrossRefGoogle ScholarPubMed
Klingner, C. M., Langbein, K., Dietzek, M., Smesny, S., Witte, O. W., Sauer, H., & Nenadic, I. (2014). Thalamocortical connectivity during resting state in schizophrenia. European Archives of Psychiatry and Clinical Neuroscience, 264(2), 111119. doi: 10.1007/s00406-013-0417-0CrossRefGoogle Scholar
Lancaster, J. L., Woldorff, M. G., Parsons, L. M., Liotti, M., Freitas, C. S., Rainey, L., … Fox, P. T. (2000). Automated Talairach atlas labels for functional brain mapping. Human Brain Mapping, 10(3), 120131. doi: 10.1002/1097-0193(200007)10:3 < 120::aid-hbm30>3.0.co;2-83.0.CO;2-8>CrossRefGoogle ScholarPubMed
Li, T., Wang, Q., Zhang, J., Rolls, E. T., Yang, W., Palaniyappan, L., … Feng, J. (2017). Brain-wide analysis of functional connectivity in first-episode and chronic stages of schizophrenia. Schizophrenia Bulletin, 43(2), 436448. doi: 10.1093/schbul/sbw099Google ScholarPubMed
Lui, S., Li, T., Deng, W., Jiang, L., Wu, Q., Tang, H., … Gong, Q. (2010). Short-term effects of antipsychotic treatment on cerebral function in drug-naive first-episode schizophrenia revealed by “resting state” functional magnetic resonance imaging. Archives of General Psychiatry, 67(8), 783792. doi: 10.1001/archgenpsychiatry.2010.84CrossRefGoogle ScholarPubMed
Mathalon, D. H., Pfefferbaum, A., Lim, K. O., Rosenbloom, M. J., & Sullivan, E. V. (2003). Compounded brain volume deficits in schizophrenia-alcoholism comorbidity. Archives of General Psychiatry, 60(3), 245252. doi: 10.1001/archpsyc.60.3.245CrossRefGoogle ScholarPubMed
McGlashan, T., Walsh, B., & Woods, S. (2010). The psychosis-risk syndrome: Handbook for diagnosis and follow-up. New York, NY: Oxford University Press.Google Scholar
Miller, T. J., McGlashan, T. H., Rosen, J. L., Cadenhead, K., Cannon, T., Ventura, J., … Woods, S. W. (2003). Prodromal assessment with the structured interview for prodromal syndromes and the scale of prodromal symptoms: Predictive validity, interrater reliability, and training to reliability. Schizophrenia Bulletin, 29(4), 703715. doi: 10.1093/oxfordjournals.schbul.a007040CrossRefGoogle ScholarPubMed
Miller, T. J., McGlashan, T. H., Rosen, J. L., Somjee, L., Markovich, P. J., Stein, K., & Woods, S. W. (2002). Prospective diagnosis of the initial prodrome for schizophrenia based on the Structured Interview for prodromal syndromes: Preliminary evidence of interrater reliability and predictive validity. The American Journal of Psychiatry, 159(5), 863865. doi: 10.1176/appi.ajp.159.5.863CrossRefGoogle ScholarPubMed
Perkins, D. O., Jeffries, C. D., Cornblatt, B. A., Woods, S. W., Addington, J., Bearden, C. E., … McGlashan, T. H. (2015). Severity of thought disorder predicts psychosis in persons at clinical high-risk. Schizophrenia Research, 169(1–3), 169177. doi: 10.1016/j.schres.2015.09.008CrossRefGoogle ScholarPubMed
Pfefferbaum, A., Lim, K. O., Zipursky, R. B., Mathalon, D. H., Rosenbloom, M. J., Lane, B., … Sullivan, E. V. (1992). Brain gray and white matter volume loss accelerates with aging in chronic alcoholics: A quantitative MRI study. Alcoholism, Clinical and Experimental Research, 16(6), 10781089. doi: 10.1111/j.1530-0277.1992.tb00702.xCrossRefGoogle ScholarPubMed
Power, J. D., Cohen, A. L., Nelson, S. M., Wig, G. S., Barnes, K. A., Church, J. A., … Petersen, S. E. (2011). Functional network organization of the human brain. Neuron, 72(4), 665678. doi: 10.1016/j.neuron.2011.09.006CrossRefGoogle ScholarPubMed
Raichle, M. E. (2011). The restless brain. Brain Connectivity, 1(1), 312. doi: 10.1089/brain.2011.0019CrossRefGoogle ScholarPubMed
Stephan, K. E., Baldeweg, T., & Friston, K. J. (2006). Synaptic plasticity and disconnection in schizophrenia. Biological Psychiatry, 59(10), 929939. doi: 10.1016/j.biopsych.2005.10.005CrossRefGoogle Scholar
Stephan, K. E., Friston, K. J., & Frith, C. D. (2009). Disconnection in schizophrenia: From abnormal synaptic plasticity to failures of self-monitoring. Schizophrenia Bulletin, 35(3), 509527. doi: 10.1093/schbul/sbn176CrossRefGoogle Scholar
Van Dijk, K. R., Sabuncu, M. R., & Buckner, R. L. (2012). The influence of head motion on intrinsic functional connectivity MRI. NeuroImage, 59(1), 431438. doi: 10.1016/j.neuroimage.2011.07.044CrossRefGoogle ScholarPubMed
Wang, H. L., Rau, C. L., Li, Y. M., Chen, Y. P., & Yu, R. (2015). Disrupted thalamic resting-state functional networks in schizophrenia. Frontiers in Behavioral Neuroscience, 9, 45. doi: 10.3389/fnbeh.2015.00045CrossRefGoogle Scholar
Weinberger, D. R. (1987). Implications of normal brain development for the pathogenesis of schizophrenia. Archives of General Psychiatry, 44(7), 660669. doi: 10.1001/archpsyc.1987.01800190080012CrossRefGoogle ScholarPubMed
Welsh, R. C., Chen, A. C., & Taylor, S. F. (2010). Low-frequency BOLD fluctuations demonstrate altered thalamocortical connectivity in schizophrenia. Schizophrenia Bulletin, 36(4), 713722. doi: 10.1093/schbul/sbn145CrossRefGoogle Scholar
Whitfield-Gabrieli, S., & Nieto-Castanon, A. (2012). Conn: A functional connectivity toolbox for correlated and anticorrelated brain networks. Brain Connectivity, 2(3), 125141. doi: 10.1089/brain.2012.0073CrossRefGoogle ScholarPubMed
Woods, S. W. (2003). Chlorpromazine equivalent doses for the newer atypical antipsychotics. The Journal of Clinical Psychiatry, 64(6), 663667. doi: 10.4088/jcp.v64n0607Google ScholarPubMed
Woodward, N. D., & Heckers, S. (2016). Mapping thalamocortical functional connectivity in chronic and early stages of psychotic disorders. Biological Psychiatry, 79(12), 10161025. doi:10.1016/j.biopsych.2015.06.026.CrossRefGoogle ScholarPubMed
Woodward, N. D., Karbasforoushan, H., & Heckers, S. (2012). Thalamocortical dysconnectivity in schizophrenia. The American Journal of Psychiatry, 169(10), 10921099. doi: 10.1176/appi.ajp.2012.12010056CrossRefGoogle Scholar
Yeo, B. T., Krienen, F. M., Sepulcre, J., Sabuncu, M. R., Lashkari, D., Hollinshead, M., … Buckner, R. L. (2011). The organization of the human cerebral cortex estimated by intrinsic functional connectivity. Journal of Neurophysiology, 106(3), 11251165. doi: 10.1152/jn.00338.2011Google ScholarPubMed