Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-23T20:54:05.610Z Has data issue: false hasContentIssue false

Regional cerebral blood flow in depression measured by positron emission tomography: the relationship with clinical dimensions

Published online by Cambridge University Press:  09 July 2009

C. J. Bench*
Affiliation:
Academic Department of Psychiatry, Royal Free Hospital School of Medicine, MRC Cyclotron Unit, Hammersmith Hospital, National Hospital for Neurology and Neurosurgery, and MRC Human Movement and Balance Unit, London
K. J. Friston
Affiliation:
Academic Department of Psychiatry, Royal Free Hospital School of Medicine, MRC Cyclotron Unit, Hammersmith Hospital, National Hospital for Neurology and Neurosurgery, and MRC Human Movement and Balance Unit, London
R. G. Brown
Affiliation:
Academic Department of Psychiatry, Royal Free Hospital School of Medicine, MRC Cyclotron Unit, Hammersmith Hospital, National Hospital for Neurology and Neurosurgery, and MRC Human Movement and Balance Unit, London
R. S. J. Frackowiak
Affiliation:
Academic Department of Psychiatry, Royal Free Hospital School of Medicine, MRC Cyclotron Unit, Hammersmith Hospital, National Hospital for Neurology and Neurosurgery, and MRC Human Movement and Balance Unit, London
R. J. Dolan
Affiliation:
Academic Department of Psychiatry, Royal Free Hospital School of Medicine, MRC Cyclotron Unit, Hammersmith Hospital, National Hospital for Neurology and Neurosurgery, and MRC Human Movement and Balance Unit, London
*
1Address for correspondence: Dr Christopher J. Bench, MRC Cyclotron Unit, Hammersmith Hospital, Du Cane Road, London W12 0HS.

Synopsis

We have previously reported focal abnormalities of regional cerebral blood flow (rCBF) in a group of 33 patients with major depression. This report, on an extended sample of 40 patients who demonstrated identical regional deficits to those previously described, examines the relationships between depressive symptoms and patterns of rCBF. Patients' symptom ratings were subjected to factor analysis, producing a three-factor solution. The scores for these three factors, which corresponded to recognizable dimensions of depressive illness, were then correlated with rCBF. The first factor had high loadings for anxiety and correlated positively with rCBF in the posterior cingulate cortex and inferior parietal lobule bilaterally. The second factor had high loadings for psychomotor retardation and depressed mood and correlated negatively with rCBF in the left dorsolateral prefrontal cortex and left angular gyrus. The third factor had a high loading for cognitive performance and correlated positively with rCBF in the left medial prefrontal cortex. These data indicate that symptomatic specificity may be ascribed to regional functional deficits in major depressive illness.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

American Psychiatric Association (1980). Diagnostic and Statistical Manual of Mental Disorders, 3rd edn.American Psychiatric Association: Washington, DC.Google Scholar
Andreasen, N. C., Grove, W. M. & Maurer, R. (1980). Cluster analysis and the classification of depression. British Journal of Psychiatry 137, 256265.CrossRefGoogle ScholarPubMed
Bailey, D. L., Friston, K. J., Jones, T. & Frackowiak, R. S. J. (1991). Physical validation of statistical parametric mapping. Journal of Cerebral Blood Flow and Metabolism 11 (suppl. 2), S150.Google Scholar
Baleydier, C. & Mauguiére, F. (1980). The duality of the cingulate gyrus in the monkey. Brain 103, 525554.CrossRefGoogle ScholarPubMed
Baxter, L. R., Phelps, M. E., Mazziotta, J. C., Schwartz, J. M., Gerner, R. H., Selin, C. E. & Sumida, R. M. (1985). Cerebral metabolic rates for glucose in mood disorders. Studies with positron emission tomography and fluorodeoxyglucose F18. Archives of General Psychiatry 42, 441447.CrossRefGoogle Scholar
Baxter, L. R., Schwartz, J. M., Phelps, M. E., Mazziotta, J. C., Guze, B. H., Selin, C. E., Gerner, R. H. & Sumida, R. M. (1989). Reduction of prefrontal cortex metabolism common to three types of depression. Archives of General Psychiatry 46, 243250.CrossRefGoogle ScholarPubMed
Bench, C. J., Friston, K. J., Brown, R. G., Scott, L. C., Frackowiak, R. S. J. & Dolan, R. J. (1992). The anatomy of melancholia – focal abnormalities of cerebral blood flow in major depression. Psychological Medicine 22, 607615.CrossRefGoogle ScholarPubMed
Brown, R. M., Crane, A. M. & Goldman, P. S. (1979). Regional distribution of monoamines in the cerebral cortex and subcortical structures of the rhesus monkey: concentrations and in vivo synthesis rates. Brain Research 168, 133150.CrossRefGoogle ScholarPubMed
Brozoski, T. J., Brown, R. M., Rosvold, H. E. & Goldman, P. S. (1979). Cognitive deficit caused by regional depletion of dopamine in prefrontal cortex of the rhesus monkey. Science 205, 929932.CrossRefGoogle ScholarPubMed
Buchsbaum, M. S., DeLisi, L. E., Holcomb, H. H., Cappelletti, J., King, A. C., Johnson, J., Hazlett, E., Dowling-Zimmerman, S., Post, R. M., Morihisa, J., Carpenter, W., Cohen, R., Pickar, D., Weinberger, D. R., Margolin, R. & Kessler, R. M. (1984). Anteroposterior gradients in cerebral glucose use in schizophrenia and affective disorders. Archives of General Psychiatry 41, 11591166.CrossRefGoogle ScholarPubMed
Cohen, R. M., Semple, W. E., Gross, M., Nordahl, T. E., King, A. C., Pickar, D. & Post, R. M. (1989). Evidence for common alterations in cerebral glucose metabolism in major affective disorders and schizophrenia. Neuropsychopharmacology 2, 241254.CrossRefGoogle ScholarPubMed
Cutting, J. C. (1992). The role of right hemisphere dysfunction in psychiatric disorders. British Journal of Psychiatry 160, 583588.CrossRefGoogle ScholarPubMed
Delvenne, V., Delecluse, F., Hubain, P. P., Schoutens, A., De Maertelaer, V. & Mendlewicz, J. (1990). Regional cerebral blood flow in patients with affective disorders. British Journal of Psychiatry 157, 359365.CrossRefGoogle ScholarPubMed
Devous, M. D. (1989). Imaging brain function by single-photon emission computer tomography. In Brain Imaging Applications in Psychiatry (ed. Andreasen, N. C.), pp. 147234. American Psychiatric Press: Washington, DC.Google Scholar
Dolan, R. J., Bench, C. J., Brown, R. G., Scott, L. C., Friston, K. J. & Frackowiak, R. S. J. (1992 a). Regional cerebral blood flow abnormalities in depressed patients with cognitive impairment. Journal of Neurology, Neurosurgery and Psychiatry 55, 768773.CrossRefGoogle ScholarPubMed
Dolan, R. J., Bench, C. J., Liddle, P. F., Friston, K. J., Frith, C. D., Grasby, P. M. & Frackowiak, R. S. J. (1992 b). Dorsolateral prefrontal cortex dysfunction in the major psychoses: symptom or disease specificity? Journal of Neurology, Neurosurgery and Psychiatry (in the press).CrossRefGoogle Scholar
Drevets, W. C., Raichle, M. E., Fox, P. T., Preskorn, S. H. & Videen, T. O. (1989). Trait and state cerebral blood flow abnormalities in depression. Society for Neuroscience Abstracts 15, 30.Google Scholar
Edelman, G. M. & Mountcastle, V. B. (1977). The Mindful Brain: Cortical Organisation and the Group-selective Theory of Higher Brain Function, pp. 710. MIT Press: Cambridge, Mass.Google Scholar
Endicott, J. & Spitzer, R. L. (1978). A diagnostic interview. The Schedule for Affective Disorders and Schizophrenia. Archives of General Psychiatry 35, 837844.CrossRefGoogle ScholarPubMed
Flor-Henry, P. (1979). On certain aspects of the localization of the cerebral systems regulating and determining emotion. Biological Psychiatry 14, 677698.Google ScholarPubMed
Foltz, E. L. & White, L. E. Jr. (1962). Pain ‘relief’ by frontal cingulotomy. Journal of Neurosurgery 19, 89100.CrossRefGoogle Scholar
Frackowiak, R. S. J., Lenzi, G.-L., Jones, T. & Heather, J. D. (1980). Quantitative measurement of regional cerebral blood flow and oxygen metabolism in man using 15O and positron emission tomography: theory, procedure and normal values. Journal of Computer Assisted Tomography 4, 727736.CrossRefGoogle ScholarPubMed
Frackowiak, R. S. J., Pozzilli, C., Legg, N. J., Du Boulay, G. H., Marshall, J., Lenzi, G. L. & Jones, T. (1981). Regional cerebral oxygen supply and utilization in dementia. A clinical and physiological study with oxygen-15 and positron tomography. Brain 104, 753778.CrossRefGoogle ScholarPubMed
Friston, K. J. & Frackowiak, R. S. J. (1991). Imaging functional anatomy. In Brainwork 2: Alfred Benzon Symposium (ed. Lassen, N. A., Ingvar, D. H., Raichle, M. E. and Frisberg, L.), pp. 111. Munksgaard: Copenhagen.Google Scholar
Friston, K. J., Passingham, R. E., Nutt, J. G., Heather, J. D., Sawle, G. V. & Frackowiak, R. S. J. (1989). Localisation in PET images: direct fitting of the intercommissural (AC-PC) line. Journal of Cerebral Blood Flow and Metabolism 9, 690695.CrossRefGoogle ScholarPubMed
Friston, K. J., Frith, C. D., Liddle, P. F., Dolan, R. J., Lammertsma, A. A. & Frackowiak, R. S. J. (1990). The relationship between global and local changes in PET scans. Journal of Cerebral Blood Flow and Metabolism 10, 458466.CrossRefGoogle ScholarPubMed
Friston, K. J., Frith, C. D., Liddle, P. F. & Frackowiak, R. S. J. (1991 a). Plastic transformation of PET images. Journal of Computer Assisted Tomography 15, 634639.CrossRefGoogle ScholarPubMed
Friston, K. J., Frith, C. D., Liddle, P. F. & Frackowiak, R. S. J. (1991 b). Comparing functional (PET) images: the assessment of significant change. Journal of Cerebral Blood Flow and Metabolism 11, 690699.CrossRefGoogle ScholarPubMed
Friston, K. J., Grasby, P., Frith, C. D., Bench, C. J., Dolan, R. J., Cowen, P. J., Liddle, P. F. & Frackowiak, R. S. J. (1991 c). The neurotransmitter basis of cognition: psychopharmacological activation studies using positron emission tomography. In Exploring Brain Functional Anatomy with Positron Tomography (ed. Chadwick, D. J. and Whelan, J.), pp. 7692. Wiley: Chichester.Google Scholar
Frith, C. D., Friston, K. J., Liddle, P. F. & Frackowiak, R. S. J. (1991). Willed action and the prefrontal cortex in man: a study with PET. Proceedings of the Royal Society of London B 244, 241246.Google Scholar
Gabriel, M., Orona, E., Foster, K. & Lambert, R. W. (1982). Mechanisms and generality of stimulus significance coding in a mammalian model system. Advances in Behavioural Biology 26, 535567.CrossRefGoogle Scholar
Gilman, S., Adams, K., Koeppe, R. A., Berent, S., Kluin, K. J., Modell, J. G., Kroll, P. & Brunberg, J. A. (1990). Cerebellar and frontal hypometabolism in alcoholic cerebellar degeneration studied with positron emission tomography. Annals of Neurology 28, 775785.CrossRefGoogle Scholar
Goldman-Rakic, P. S. (1986). Circuitry of primate prefrontal cortex and regulation of behaviour by representational memory. In Handbook of Physiology – The Nervous System V (ed. Mountcastle, V. B., Bloom, F. E. and Geiger, S. R.), pp. 373417. American Physiological Society: Bethesda.Google Scholar
Goldstein, K. (1948). Language and Language Disturbances. Grune & Stratton: New York.Google Scholar
Goldstein, P. C., Brown, G. G., Welch, K. M. A., Marcus, A., Ewing, J. R. & Rosenbaum, G. (1985). Age related-decline of rCBF in schizophrenia and major affective disorder. Journal of Cerebral Blood Flow and Metabolism 5 (suppl. 1), 203204.Google Scholar
Gur, R. E., Skolnick, B. E., Gur, R. C., Caroff, S., Rieger, W., Obrist, W. D., Younkin, D. & Reivich, M. (1984). Brain function in psychiatric disorders. 2. Regional cerebral blood flow in medicated unipolar depressives. Archives of General Psychiatry 41, 695699.CrossRefGoogle Scholar
Gustafson, L., Risberg, J. & Silfverskiold, P. (1981 a). Cerebral blood flow in dementia and depression. Lancet i, 275.CrossRefGoogle Scholar
Gustafson, L., Risberg, J. & Silfverskiold, P. (1981 b). Regional cerebral blood flow in organic dementias and affective disorders. Advances in Biological Psychiatry 6, 109116.CrossRefGoogle Scholar
Hachinski, V. C., Iliff, L. D., Zilhka, E., Du Boulay, G. H., McAllister, V. L., Marshall, J., Ross Russell, R. W. & Symon, L. (1975). Cerebral blood flow in dementia. Archives of Neurology 32, 632637.CrossRefGoogle ScholarPubMed
Hamilton, M. (1960). A rating scale for depression. Journal of Neurology, Neurosurgery and Psychiatry 23, 5662.CrossRefGoogle ScholarPubMed
Heilman, K. M., Pandya, D. N. & Geschwind, N. (1970). Trimodal inattention following parietal lobe ablations. Transcripts of the American Neurological Association 95, 259261.Google ScholarPubMed
Heninger, G. R. & Charney, D. S. (1987). Mechanism of action of antidepressant treatments: implications for the aetiology and treatment of depressive disorders. In Psychopharmacology: The Third Generation of Progress (ed. Meltzer, H.), pp. 535544. Raven Press: New York.Google Scholar
House, A., Dennis, M., Warlow, C., Hawton, K. & Molyneux, A. (1990). Mood disorders after stroke and their relation to lesion location. A CT scan study. Brain 113, 11131129.CrossRefGoogle ScholarPubMed
Irle, E. (1990). An analysis of the correlation of lesion size, localization and behavioral effects in 283 published studies of cortical and subcortical lesions in old-world monkeys. Brain Research Reviews 15, 181213.CrossRefGoogle ScholarPubMed
Johanson, M., Risberg, J., Silfverskiold, P. & Gustafson, L. (1979). Regional cerebral blood flow related to acute memory disturbances following electroconvulsive therapy in depression. Acta Neurologica Scandinavica 60 (suppl. 72), 534535.Google Scholar
Jones, A. K. P., Brown, W. D., Friston, K. J., Qi, L. Y. & Frackowiak, R. S. J. (1991). Cortical and subcortical localization of response to pain in man using positron emission tomography. Proceedings of the Royal Society of London B 244, 3944.Google Scholar
Kendell, R. E. & Gourlay, J. (1970). The clinical distinction between the affective psychoses and schizophrenia. British Journal of Psychiatry 117, 261266.CrossRefGoogle Scholar
Liddle, P. F., Friston, K. J., Frith, C. D., Hirsch, S. R., Jones, T. & Frackowiak, R. S. J. (1992). Patterns of cerebral blood flow in schizophrenia. British Journal of Psychiatry 160, 179186.CrossRefGoogle ScholarPubMed
Lueck, C. J., Zeki, S., Friston, K. J., Deiber, M.-P., Cope, P., Cunningham, V. J., Lammertsma, A. A., Kennard, C. & Frackowiak, R. S. J. (1989). The colour centre in the cerebral cortex of man. Nature 340, 386389.CrossRefGoogle ScholarPubMed
Luria, A. R. (1970). Traumatic Aphasia. Mouton: The Hague.CrossRefGoogle Scholar
Lynch, J. C. (1980). The functional organization of the posterior parietal association cortex. Behavioural Brain Science 3, 485499.CrossRefGoogle Scholar
Martinot, J. L., Hardy, P., Feline, A., Huret, J. D., Mazoyer, B., Attar-Levy, D., Pappata, S. & Syrota, A. (1990). Left prefrontal glucose hypometabolism in the depressed state: a confirmation. American Journal of Psychiatry 147, 13131317.Google ScholarPubMed
Mathew, R. J., Meyer, J. S., Francis, D. J., Semchuk, K. M., Mortel, K. & Claghorn, J. L. (1980 a). Cerebral blood flow in depression. American Journal of Psychiatry 137, 14491450.Google ScholarPubMed
Mathew, R. J., Meyer, J. S., Semchuk, K. M., Francis, D. J. & Claghorn, J. L. (1980 b). Cerebral blood flow in depression. Lancet i, 1308.CrossRefGoogle Scholar
Mesulam, M.-M. (1983). The functional anatomy and hemispheric specialization for directed attention. Trends in Neuroscience 6, 384387.CrossRefGoogle Scholar
Mesulam, M.-M. (1986). Frontal cortex and behavior. Annals of Neurology 19, 320325.CrossRefGoogle ScholarPubMed
Mesulam, M.-M. (1990). Large-scale neurocognitive networks and distributed processing for attention, language and memory. Annals of Neurology 28, 597613.CrossRefGoogle ScholarPubMed
Mountcastle, V. B. & Lynch, J. C. (1975). Posterior parietal association cortex of the monkey: command functions for operations within extrapersonal space. Journal of Neurophysiology 38, 871909.CrossRefGoogle ScholarPubMed
Oldfield, R. C. (1971). The assessment and analysis of handedness; the Edinburgh inventory. Neuropsychologia 9, 97113.CrossRefGoogle ScholarPubMed
Pandya, D. N., Van Hoesen, G. W. & Mesulam, M.-M. (1981). Efferent connections of the cingulate gyrus in the rhesus monkey. Experimental Brain Research 42, 319330.CrossRefGoogle ScholarPubMed
Papez, J. W. (1937). A proposed mechanism of emotion. Archives of Neurology and Psychiatry 79, 217224.Google Scholar
Pardo, J. V., Pardo, P. J., Janer, K. W. & Raichle, M. E. (1990). The anterior cingulate cortex mediates processing selection in the Stroop attentional conflict paradigm. Proceedings of the National Academy of Sciences, USA 87, 256259.CrossRefGoogle ScholarPubMed
Paykel, E. S. (1971). Classification of depressed patients: a cluster analysis derived grouping. British Journal of Psychiatry 118, 275288.CrossRefGoogle ScholarPubMed
Posner, M. I. & Petersen, S. E. (1990). The attention system of the human brain. Annual Review of Neurosciences 13, 2542.CrossRefGoogle ScholarPubMed
Post, R. M., DeLisi, L. E., Holcomb, H. H., Uhde, T. W., Cohen, R. & Buchsbaum, M. S. (1987). Glucose utilization in the temporal cortex of affectively ill patients: positron emission tomography. Biological Psychiatry 22, 545553.CrossRefGoogle ScholarPubMed
Risberg, J. (1980). Regional cerebral blood flow measurements by 133Xe-inhalation: methodology and applications in neuropsychology and psychiatry. Brain Language 9, 934.CrossRefGoogle Scholar
Robinson, R. G., Starr, L. B., Kubos, K. L. & Price, T. R. (1983). A two-year longitudinal study of post-stroke mood disorders: findings during the initial evaluation. Stroke 14, 736741.CrossRefGoogle ScholarPubMed
Robinson, R. G., Kubos, K. L., Starr, L. B., Rao, K. & Price, T. R. (1984). Mood disorders in stroke patients. Importance of location of lesion. Brain 107, 8191.CrossRefGoogle ScholarPubMed
Rush, A. J., Devous, M. D., Schlesser, M. A., Fulton, C., Chehabi, H. H., Stokely, E. M. & Bonte, F. J. (1985). Regional cerebral blood flow in depression. Fourth World Congress of Biological Psychiatry, p. 223.Google Scholar
Sackeim, H. A., Prohovnik, I., Apter, S., Lucas, L., Decina, P., Mukherjee, S., Prudic, J. & Malitz, S. (1987). Regional cerebral blood flow in affective disorders: baseline and effects of treatment. In Cerebral Dynamics, Laterality, and Psychopathology (ed. Takahashi, R., Flor-Henry, P., Gruzelier, J. and Niwa, S.), pp. 273286. Elsevier Science Publishing Co. Inc.: New York.Google Scholar
Sackeim, H. A., Prohovnik, I., Moeller, J. R., Brown, R. P., Apter, S., Prudic, J., Devanand, D. P. & Mukherjee, S. (1990). Regional cerebral blood flow in mood disorders. I. Comparison of major depressives and normal controls at rest. Archives of General Psychiatry 47, 6070.CrossRefGoogle ScholarPubMed
Sawaguchi, T. & Goldman-Rakic, P. S. (1991). D1 dopamine receptors in prefrontal cortex: involvement in working memory. Science 251, 947950.CrossRefGoogle ScholarPubMed
Schwartz, J. M., Baxter, L. R., Mazziotta, J. C., Gerner, R. H. & Phelps, M. E. (1987). The differential diagnosis of depression. Relevance of positron emission tomography studies of cerebral glucose metabolism to the bipolar–unipolar dichotomy. Journal of the American Medical Association 258, 13681374.CrossRefGoogle Scholar
Sharpe, M., Hawton, K., House, A., Molyneux, A., Sandercock, P., Bamford, J. & Warlow, C. (1990). Mood disorders in long term survivors of stroke: associations with brain lesion location and volume. Psychological Medicine 20, 815828.CrossRefGoogle ScholarPubMed
Silfverskiold, P. & Risberg, J. (1989). Regional cerebral blood flow in depression and mania. Archives of General Psychiatry 46, 253259.CrossRefGoogle ScholarPubMed
Silfverskiold, P., Gustafson, L., Risberg, J. & Rosen, I. (1986). Acute and late effects of electroconclusive therapy. Clinical outcome, regional cerebral blood flow, and Electroencephalogram. Annals of the New York Academy of Sciences 462, 236248.CrossRefGoogle Scholar
Silfverskiold, P., Rosen, I., Risberg, J. & Gustafson, L. (1987). Changes in psychiatric symptoms related to EEG and cerebral blood flow following electroconclusive therapy in depression. European Archives of Psychiatry and Neurological Sciences 236, 195201.CrossRefGoogle Scholar
Spinks, T. J., Jones, T., Gilardi, M. C. & Heather, J. D. (1988). Physical performance of the latest generation of commercial positron scanner. IEEE Transactions on Nuclear Science 35, 721725.CrossRefGoogle Scholar
Spitzer, R. L., Endicott, J. & Robins, E. (1977). Research Diagnostic Criteria for a Selected Group of Functional Disorders. Biometrics Research Division, New York State Psychiatric Institute: New York.Google Scholar
Szentagothal, J. (1976). Basic circuitry of the neocortex. Experimental Brain Research 29, suppl. 1, 282287.Google Scholar
Talairach, J. & Tournoux, P. (1988). Co-Planar Stereotaxic Atlas of the Human Brain, pp. 1122. Georg Thieme Verlag: Stuttgart.Google Scholar
Talbot, J. D., Marrett, S., Evans, A. C., Meyer, E., Bushnell, M. C. & Duncan, G. H. (1991). Multiple representations of pain in human cerebral cortex. Science 251, 13551358.CrossRefGoogle ScholarPubMed
Uytedenhoef, P., Portelange, P., Jacquy, J., Charles, G., Linkowski, P. & Mendlewicz, J. (1983). Regional cerebral blood flow and lateralised hemispheric dysfunction in depression. British Journal of Psychiatry 143, 128132.CrossRefGoogle Scholar
Warren, L. R., Butler, R. W., Katholi, C. R., McFarland, C. E., Crews, E. L. & Halsey, J. H. Jr., (1984). Focal changes in cerebral blood flow produced by monetary incentive during a mental mathematics task in normal and depressed subjects. Brain Cognition 3, 7185.CrossRefGoogle ScholarPubMed
Weinberg, D. R., Berman, K. F. & Illowsky, B. P. (1988). Physiological dysfunction of dorsolateral prefrontal cortex in schizophrenia. III. A new cohort and evidence for a monoaminergic mechanism. Archives of General Psychiatry 45, 609615.CrossRefGoogle Scholar