Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-27T15:09:28.641Z Has data issue: false hasContentIssue false

Predictors of pharmacotherapy outcomes for body dysmorphic disorder: a machine learning approach

Published online by Cambridge University Press:  10 January 2022

Joshua E. Curtiss*
Affiliation:
Massachusetts General Hospital, Boston, MA, USA Harvard Medical School, Boston, MA, USA
Emily E. Bernstein
Affiliation:
Massachusetts General Hospital, Boston, MA, USA Harvard Medical School, Boston, MA, USA
Sabine Wilhelm
Affiliation:
Massachusetts General Hospital, Boston, MA, USA Harvard Medical School, Boston, MA, USA
Katharine A. Phillips
Affiliation:
Rhode Island Hospital, Butler Hospital, and Alpert Medical School of Brown University, Providence, RI, USA New York-Presbyterian Hospital and Weill Cornell Medical College, New York, NY, USA
*
Author for correspondence: Joshua E. Curtiss, E-mail: [email protected]

Abstract

Background

Serotonin-reuptake inhibitors (SRIs) are first-line pharmacotherapy for the treatment of body dysmorphic disorder (BDD), a common and severe disorder. However, prior research has not focused on or identified definitive predictors of SRI treatment outcomes. Leveraging precision medicine techniques such as machine learning can facilitate the prediction of treatment outcomes.

Methods

The study used 10-fold cross-validation support vector machine (SVM) learning models to predict three treatment outcomes (i.e. response, partial remission, and full remission) for 97 patients with BDD receiving up to 14-weeks of open-label treatment with the SRI escitalopram. SVM models used baseline clinical and demographic variables as predictors. Feature importance analyses complemented traditional SVM modeling to identify which variables most successfully predicted treatment response.

Results

SVM models indicated acceptable classification performance for predicting treatment response with an area under the curve (AUC) of 0.77 (sensitivity = 0.77 and specificity = 0.63), partial remission with an AUC of 0.75 (sensitivity = 0.67 and specificity = 0.73), and full remission with an AUC of 0.79 (sensitivity = 0.70 and specificity = 0.79). Feature importance analyses supported constructs such as better quality of life and less severe depression, general psychopathology symptoms, and hopelessness as more predictive of better treatment outcome; demographic variables were least predictive.

Conclusions

The current study is the first to demonstrate that machine learning algorithms can successfully predict treatment outcomes for pharmacotherapy for BDD. Consistent with precision medicine initiatives in psychiatry, the current study provides a foundation for personalized pharmacotherapy strategies for patients with BDD.

Type
Original Article
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Angelakis, I., Gooding, P. A., & Panagioti, M. (2016). Suicidality in body dysmorphic disorder (BDD): A systematic review with meta-analysis. Clinical Psychology Review, 49, 5566.CrossRefGoogle ScholarPubMed
Beck, A. T., & Steer, R. A. (1988) Manual for the beck hopelessness scale. San Antonio, TX: Psychological Corporation.Google Scholar
Beck, A. T., Steer, R. A., & Brown, G. K. (1996). Beck depression inventory – second edition manual. San Antonio, TX: The Psychological Corporation.Google Scholar
Bernardini, F., Attademo, L., Cleary, S. D., Luther, C., Shim, R., Quartesan, R., & Compton, M. T. (2017). Risk prediction models in psychiatry: Toward a new frontier for the prevention of mental illnesses. Journal of Clinical Psychiatry, 78, 572583.CrossRefGoogle Scholar
Boehmke, B., & Greenwell, B. M. (2019). Hands-on machine learning with R. Boca Raton, FL: CRC Press.CrossRefGoogle Scholar
Brohede, S., Wingren, G., Wijma, B., & Wijma, K. (2015). Prevalence of body dysmorphic disorder among Swedish women: A population-based study. Comprehensive Psychiatry, 58, 108115.CrossRefGoogle ScholarPubMed
Buhlmann, U., Glaesmer, H., Mewes, R., Fama, J. M., Wilhelm, S., Brähler, E., & Rief, W. (2010). Updates on the prevalence of body dysmorphic disorder: A population-based survey. Psychiatry Research, 178, 171175.CrossRefGoogle ScholarPubMed
Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). SMOTE: synthetic minority over-sampling technique. Journal of Artificial Intelligence Research, 16, 321357.CrossRefGoogle Scholar
Chekroud, A. M., Zotti, R. J., Shehzad, Z., Gueorguieva, R., Johnson, M. K., Trivedi, M. H., … Corlett, P. R. (2016). Cross-trial prediction of treatment outcome in depression: a machine learning approach. The Lancet Psychiatry, 3(3), 243250.CrossRefGoogle ScholarPubMed
Derogatis, L., & Melisaratos, N. (1983). The brief symptom inventory: An introductory report. Psychological Medicine, 13, 595605.CrossRefGoogle ScholarPubMed
Eisen, J. L., Phillips, K. A., Baer, L., Beer, D. A., Atala, K. D., & Rasmussen, S. A. (1998). The brown assessment of beliefs scale: Reliability and validity. American Journal of Psychiatry, 155, 102108.CrossRefGoogle ScholarPubMed
Endicott, J., Nee, J., Harrison, W., & Blumenthal, R. (1993). Quality of life enjoyment and satisfaction questionnaire: A new measure. Psychopharmacology Bulletin, 29, 321326.Google ScholarPubMed
Fang, A., Porth, R., Phillips, K. A., & Wilhelm, S. (2019). Personality as a predictor of treatment response to escitalopram in adults with body dysmorphic disorder. Journal of Psychiatric Practice, 25, 347357.CrossRefGoogle ScholarPubMed
Fernández de la Cruz, L. F., Enander, J., Rück, C., Wilhelm, S., Phillips, K. A., Steketee, G., … Veale, D. (2021). Empirically defining treatment response and remission in body dysmorphic disorder. Psychological Medicine, 51, 17.CrossRefGoogle ScholarPubMed
First, M. B., Gibbon, M., Spitzer, R. L., Williams, J. B. W., & Benjamin, L. S. (1997). Structured Clinical Interview for DSM-IV Axis II personality disorders (SCID-II). Washington, DC: American Psychiatric Press.Google Scholar
First, M. B., Spitzer, R. L., Gibbon, M., & Williams, J. B. W. (1997). Structured clinical interview for DSM-IV axis I disorders (SCID I). New York: Biometric Research Department.Google Scholar
Flygare, O., Enander, J., Andersson, E., Ljótsson, B., Ivanov, V. Z., Mataix-Cols, D., & Rück, C. (2020). Predictors of remission from body dysmorphic disorder after internet-delivered cognitive behavior therapy: A machine learning approach. BMC Psychiatry, 20, 19.CrossRefGoogle ScholarPubMed
Greenberg, J. L., Phillips, K. A., Steketee, G., Hoeppner, S. S., & Wilhelm, S. (2019). Predictors of response to cognitive-behavioral therapy for body dysmorphic disorder. Behavior Therapy, 50, 839849.CrossRefGoogle ScholarPubMed
Guy, W. (1976). ECDEU Assessment manual for psychopharmacology: Revised. Rockville, MD: ECDEU Assessment Manual. U.S. Department of Health, Education, and Welfare, Public Health Service, Alcohol, Drug Abuse, and Mental Health Administration, National Institute of Mental Health, Psychopharmacology Research Branch, Division of Extramural Research Programs.Google Scholar
Harrison, A., de la Cruz, L. F., Enander, J., Radua, J., & Mataix-Cols, D. (2016). Cognitive-behavioral therapy for body dysmorphic disorder: A systematic review and meta-analysis of randomized controlled trials. Clinical Psychology Review, 48, 4351.CrossRefGoogle ScholarPubMed
Hayes, S. C., Hofmann, S. G., Stanton, C. E., Carpenter, J. K., Sanford, B. T., Curtiss, J. E., & Ciarrochi, J. (2019). The role of the individual in the coming era of process-based therapy. Behaviour Research and Therapy, 117, 4053.CrossRefGoogle ScholarPubMed
Hofmann, S. G., Curtiss, J. E., & Hayes, S. C. (2020). Beyond linear mediation: Toward a dynamic network approach to study treatment processes. Clinical Psychology Review, 76, 101824.CrossRefGoogle Scholar
Hollander, E., Allen, A., Kwon, J., Aronowitz, B., Schmeidler, J., Wong, C., & Simeon, D. (1999). Clomipramine vs desipramine crossover trial in body dysmorphic disorder: Selective efficacy of a serotonin reuptake inhibitor in imagined ugliness. Archives of General Psychiatry, 56, 10331039.CrossRefGoogle ScholarPubMed
Hoogendoorn, M., Berger, T., Schulz, A., Stolz, T., & Szolovits, P. (2016). Predicting social anxiety treatment outcome based on therapeutic email conversations. IEEE Journal of Biomedical and Health Informatics, 21(5), 14491459.CrossRefGoogle ScholarPubMed
Hosmer, D. W., & Lemeshow, S. (1999). Applied logistic regression (2nd ed.). New York: John Wiley & Sons.Google Scholar
Koran, L. M., Abujaoude, E., Large, M. D., & Serpe, R. T. (2008). The prevalence of body dysmorphic disorder in the United States adult population. CNS Spectrums, 13, 316322.CrossRefGoogle ScholarPubMed
Kuhn, M. (2008). Caret package. Journal of Statistical Software, 28, 126.Google Scholar
Kuhn, M., & Johnson, K. (2013). Applied predictive modeling. New York: Springer.CrossRefGoogle Scholar
Lee, Y., Ragguett, R. M., Mansur, R. B., Boutilier, J. J., Rosenblat, J. D., Trevizol, A., … McIntyre, R. S. (2018). Applications of machine learning algorithms to predict therapeutic outcomes in depression: A meta-analysis and systematic review. Journal of Affective Disorders, 241, 519532.CrossRefGoogle ScholarPubMed
Miller, I. W., Bishop, S., Norman, W. H., & Maddever, H. (1985). The modified Hamilton rating scale for depression: Reliability and validity. Psychiatry Research, 14, 131142.CrossRefGoogle ScholarPubMed
Nie, Z., Vairavan, S., Narayan, V. A., Ye, J., & Li, Q. S. (2018). Predictive modeling of treatment-resistant depression using data from STAR*D and an independent clinical study. PLoS One, 13, e0197268.CrossRefGoogle Scholar
Papakostas, G. I., Petersen, T., Homberger, C. H., Green, C. H., Smith, J., Alpert, J. E., & Fava, M. (2007). Hopelessness as a predictor of non-response to fluoxetine in major depressive disorder. Annals of Clinical Psychiatry, 19, 58.CrossRefGoogle ScholarPubMed
Phillips, K. A. (2017). Pharmacotherapy and other somatic treatments for body dysmorphic disorder. In Phillips, K. A. (Ed.), Body dysmorphic disorder: Advances in research and clinical practice (pp. 333356). New York: Oxford University Press.Google Scholar
Phillips, K. A., Albertini, R. S., & Rasmussen, S. A. (2002). A randomized placebo-controlled trial of fluoxetine in body dysmorphic disorder. Archives of General Psychiatry, 59, 381388.CrossRefGoogle ScholarPubMed
Phillips, K. A., Coles, M. E., Menard, W., Yen, S., Fay, C., & Weisberg, R. B. (2005a). Suicidal ideation and suicide attempts in body dysmorphic disorder. The Journal of Clinical Psychiatry, 66, 717725.CrossRefGoogle ScholarPubMed
Phillips, K. A., Dwight, M. M., & McElroy, S. L. (1998). Efficacy and safety of fluvoxamine in body dysmorphic disorder. Journal of Clinical Psychiatry, 59, 165171.CrossRefGoogle ScholarPubMed
Phillips, K. A., Hart, A. S., & Menard, W. (2014). Psychometric evaluation of the yale–brown obsessive–compulsive scale modified for body dysmorphic disorder (BDD-YBOCS). Journal of Obsessive–Compulsive and Related Disorders, 3, 205208.CrossRefGoogle Scholar
Phillips, K. A., Hollander, E., Rasmussen, S. A., Aronowitz, B. R., DeCaria, C., & Goodman, W. K. (1997). A severity rating scale for body dysmorphic disorder: Development, reliability, and validity of a modified version of the Yale-brown obsessive–compulsive scale. Psychopharmacology Bulletin, 33, 1722.Google ScholarPubMed
Phillips, K. A., Keshaviah, A., Dougherty, D. D., Stout, R. L., Menard, W., & Wilhelm, S. (2016). Pharmacotherapy relapse prevention in body dysmorphic disorder: A double-blind, placebo-controlled trial. American Journal of Psychiatry, 173, 887895.CrossRefGoogle ScholarPubMed
Phillips, K. A., & McElroy, S. L. (2000). Personality disorders and traits in patients with body dysmorphic disorder. Comprehensive Psychiatry, 41, 229236.CrossRefGoogle ScholarPubMed
Phillips, K. A., Menard, W., Fay, C., & Weisberg, R. (2005b). Demographic characteristics, phenomenology, comorbidity, and family history in 200 individuals with body dysmorphic disorder. Psychosomatics, 46, 317325.CrossRefGoogle ScholarPubMed
Phillips, K. A., & Najjar, F. (2003). An open-label study of citalopram in body dysmorphic disorder. The Journal of Clinical Psychiatry, 64, 715720.CrossRefGoogle ScholarPubMed
Phillips, K. A., Pagano, M. E., Menard, W., & Stout, R. L. (2006). A 12-month follow-up study of the course of body dysmorphic disorder. American Journal of Psychiatry, 163, 907912.CrossRefGoogle ScholarPubMed
Phillips, K. A., Quinn, G., & Stout, R. L. (2008). Functional impairment in body dysmorphic disorder: A prospective, follow-up study. Journal of Psychiatric Research, 42, 701707.CrossRefGoogle ScholarPubMed
Reich, J. H., & Vasile, R. G. (1993). Effect of personality disorders on the treatment outcome of axis I conditions: An update. The Journal of Nervous and Mental Disease, 181, 475484.CrossRefGoogle ScholarPubMed
Rief, W., Buhlmann, U., Wilhelm, S., Borkenhagen, A., & Brähler, E. (2006). The prevalence of body dysmorphic disorder: A population-based survey. Psychological Medicine, 36, 877885.CrossRefGoogle ScholarPubMed
Schieber, K., Kollei, I., de Zwaan, M., & Martin, A. (2015). Classification of body dysmorphic disorder – what is the advantage of the new DSM-5 criteria?. Journal of Psychosomatic Research, 78, 223227.CrossRefGoogle ScholarPubMed
Senior, M., Fanshawe, T., Fazel, M., & Fazel, S. (2021). Prediction models for child and adolescent mental health: A systematic review of methodology and reporting in recent research. JCPP Advances, e12034.Google Scholar
Snorrason, I., Beard, C., Christensen, K., Bjornsson, A. S., & Björgvinsson, T. (2019). Body dysmorphic disorder and major depressive episode have comorbidity-independent associations with suicidality win an acute psychiatric setting. Journal of Affective Disorders, 259, 266270.CrossRefGoogle Scholar
Wilhelm, S., Phillips, K. A., Greenberg, J. L., O'Keefe, S. M., Hoeppner, S. S., Keshaviah, A., … Schoenfeld, D. A. (2019). Efficacy and posttreatment effects of therapist-delivered cognitive behavioral therapy vs supportive psychotherapy for adults with body dysmorphic disorder: A randomized clinical trial. JAMA Psychiatry, 76(4), 363373.CrossRefGoogle ScholarPubMed
Supplementary material: File

Curtiss et al. supplementary material

Curtiss et al. supplementary material

Download Curtiss et al. supplementary material(File)
File 18.2 KB