Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-05T05:40:52.035Z Has data issue: false hasContentIssue false

The prediction of resilience to alcohol consumption in youths: insular and subcallosal cingulate myeloarchitecture

Published online by Cambridge University Press:  04 November 2020

Kathrin Weidacker
Affiliation:
Department of Psychiatry, University of Cambridge, Cambridge, UK
Seung-Goo Kim
Affiliation:
Department of Psychiatry, University of Cambridge, Cambridge, UK Department of Psychology and Neuroscience, Duke University, Durham, North Carolina, USA
Mette Buhl-Callesen
Affiliation:
Centre for Alcohol and Drug Research, School of Business and Social Sciences, University of Aarhus, Aarhus, Denmark
Mads Jensen
Affiliation:
Center of Functionally Integrative Neuroscience, MINDLab, Aarhus University, Aarhus, Denmark
Mads Uffe Pedersen
Affiliation:
Centre for Alcohol and Drug Research, School of Business and Social Sciences, University of Aarhus, Aarhus, Denmark
Kristine Rømer Thomsen
Affiliation:
Centre for Alcohol and Drug Research, School of Business and Social Sciences, University of Aarhus, Aarhus, Denmark
Valerie Voon*
Affiliation:
Department of Psychiatry, University of Cambridge, Cambridge, UK
*
Author for correspondence: Valerie Voon, E-mail: [email protected]

Abstract

Background

The prediction of alcohol consumption in youths and particularly biomarkers of resilience, is critical for early intervention to reduce the risk of subsequent harmful alcohol use.

Methods

At baseline, the longitudinal relaxation rate (R1), indexing grey matter myelination (i.e. myeloarchitecture), was assessed in 86 adolescents/young adults (mean age = 21.76, range: 15.75–26.67 years). The Alcohol Use Disorder Identification Test (AUDIT) was assessed at baseline, 1- and 2-year follow-ups (12- and 24-months post-baseline). We used a whole brain data-driven approach controlled for age, gender, impulsivity and other substance and behavioural addiction measures, such as problematic cannabis use, drug use-related problems, internet gaming, pornography use, binge eating, and levels of externalization, to predict the change in AUDIT scores from R1.

Results

Greater baseline bilateral anterior insular and subcallosal cingulate R1 (cluster-corrected family-wise error p < 0.05) predict a lower risk for harmful alcohol use (measured as a reduction in AUDIT scores) at 2-year follow-up. Control analyses show that other grey matter measures (local volume or fractional anisotropy) did not reveal such an association. An atlas-based machine learning approach further confirms the findings.

Conclusions

The insula is critically involved in predictive coding of autonomic function relevant to subjective alcohol cue/craving states and risky decision-making processes. The subcallosal cingulate is an essential node underlying emotion regulation and involved in negative emotionality addiction theories. Our findings highlight insular and cingulate myeloarchitecture as a potential protective biomarker that predicts resilience to alcohol misuse in youths, providing novel identifiers for early intervention.

Type
Original Article
Copyright
Copyright © The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

These authors contributed equally to the study.

References

Adamson, S. J., & Sellman, J. D. (2003). A prototype screening instrument for cannabis use disorder: The Cannabis Use Disorders Identification Test (CUDIT) in an alcohol-dependent clinical sample. Drug and Alcohol Review, 22, 309315.CrossRefGoogle Scholar
Allen, M., Frank, D., Glen, J. C., Fardo, F., Callaghan, M. F., & Rees, G. (2017). Insula and somatosensory cortical myelination and iron markers underlie individual differences in empathy. Scientific Reports, 7, 43316.CrossRefGoogle ScholarPubMed
Arnett, J. J. (2000). Emerging adulthood: A theory of development from the late teens through the twenties. American Psychologist, 55, 469480.CrossRefGoogle ScholarPubMed
Ashburner, J., & Friston, K. J. (2000). Voxel-based morphometry - the methods. NeuroImage, 11, 805821.CrossRefGoogle ScholarPubMed
Ashburner, J., & Friston, K. J. (2005). Unified segmentation. NeuroImage, 26, 839851.CrossRefGoogle ScholarPubMed
Bachman, J. G., Wadsworth, K. N., O'Malley, P. M., Johnston, L. D., & Schulenberg, J. E. (2013). Smoking, drinking, and drug use in young adulthood: The impacts of new freedoms and new responsibilities. Mahwah, NJ: Psychology Press.CrossRefGoogle Scholar
Ballman, K. V. (2015). Biomarker: Predictive or prognostic? Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 33, 39683971.CrossRefGoogle ScholarPubMed
Basser, P. J., Mattiello, J., & LeBihan, D. (1994). MR Diffusion tensor spectroscopy and imaging. Biophysical Journal, 66, 259267.CrossRefGoogle ScholarPubMed
Behrendt, S., Wittchen, H.-U., Höfler, M., Lieb, R., & Beesdo, K. (2009). Transitions from first substance use to substance use disorders in adolescence: Is early onset associated with a rapid escalation? Drug and Alcohol Dependence, 99, 6878.CrossRefGoogle ScholarPubMed
Bennett, M. E., McCrady, B. S., Johnson, V., & Pandina, R. J. (1999). Problem drinking from young adulthood to adulthood: Patterns, predictors and outcomes. Journal of Studies on Alcohol, 60, 605614.CrossRefGoogle ScholarPubMed
Berman, A. H., Bergman, H., Palmstierna, T., & Schlyter, F. (2005). Evaluation of the Drug Use Disorders Identification Test (DUDIT) in criminal justice and detoxification settings and in a Swedish population sample. European Addiction Research, 11, 2231.CrossRefGoogle Scholar
Butti, C., Santos, M., Uppal, N., & Hof, P. R. (2013). Von Economo neurons: Clinical and evolutionary perspectives. Cortex, 491, 312326.CrossRefGoogle Scholar
Callaghan, M. F., Freund, P., Draganski, B., Anderson, E., Cappelletti, M., Chowdhury, R., … Weiskopf, N. (2014). Widespread age-related differences in the human brain microstructure revealed by quantitative magnetic resonance imaging. Neurobiology of Aging, 35, 18621872.CrossRefGoogle ScholarPubMed
Chase, H. W., Eickhoff, S. B., Laird, A. R., & Hogarth, L. (2011). The neural basis of drug stimulus processing and craving: An activation likelihood estimation meta-analysis. Biological Psychiatry, 70, 785793.CrossRefGoogle ScholarPubMed
Chassin, L., Flora, D. B., & King, K. M. (2004). Trajectories of alcohol and drug use and dependence from adolescence to adulthood: The effects of familial alcoholism and personality. Journal of Abnormal Psychology, 113, 483498.CrossRefGoogle ScholarPubMed
Chen, K., & Kandel, D. B. (1995). The natural history of drug use from adolescence to the mid-thirties in a general population sample. American Journal of Public Health, 85, 4147.CrossRefGoogle Scholar
Chung, T., & Clark, D. B. (2014). Insula white matter volume linked to binge drinking frequency through enhancement motives in treated adolescents. Alcoholism: Clinical and Experimental Research, 38, 19321940.CrossRefGoogle ScholarPubMed
Connolly, C. G., Bell, R. P., Foxe, J. J., & Garavan, H. (2013). Dissociated grey matter changes with prolonged addiction and extended abstinence in cocaine users. PLoS One, 8, e59645.CrossRefGoogle ScholarPubMed
Cyders, M. A., Smith, G. T., Spillane, N. S., Fischer, S., Annus, A. M., & Peterson, C. (2007). Integration of impulsivity and positive mood to predict risky behavior: Development and validation of a measure of positive urgency. Psychological Assessment, 19, 107118.CrossRefGoogle ScholarPubMed
Dager, A. D., Anderson, B. M., Rosen, R., Khadka, S., Sawyer, B., Jiantonio-Kelly, R. E., … Pearlson, G. D. (2014). Functional magnetic resonance imaging (fMRI) response to alcohol pictures predicts subsequent transition to heavy drinking in college students. Addiction, 109, 585595.CrossRefGoogle ScholarPubMed
Deistung, A., Schäfer, A., Schweser, F., Biedermann, U., Turner, R., & Reichenbach, J. R. (2013). Toward in vivo histology: A comparison of quantitative susceptibility mapping (QSM) with magnitude-, phase-, and R2*-imaging at ultra-high magnetic field strength. NeuroImage, 65, 299314.CrossRefGoogle ScholarPubMed
Demirakca, T., Ende, G., Kammerer, N., Welzel-Marquez, H., Hermann, D., Heinz, A., & Mann, K. (2011). Effects of alcoholism and continued abstinence on brain volumes in both genders. Alcoholism: Clinical and Experimental Research, 35, 16781685.Google ScholarPubMed
Droutman, V., Read, S. J., & Bechara, A. (2015). Revisiting the role of the insula in addiction. Trends in Cognitive Sciences, 19, 414420.CrossRefGoogle ScholarPubMed
Edwards, L. J., Kirilina, E., Mohammadi, S., & Weiskopf, N. (2018). Microstructural imaging of human neocortex in vivo. NeuroImage, 182, 184206.CrossRefGoogle ScholarPubMed
Engelmann, J. M., Versace, F., Robinson, J. D., Minnix, J. A., Lam, C. Y., Cui, Y., … Cinciripini, P. M. (2012). Neural substrates of smoking cue reactivity: A meta-analysis of fMRI studies. NeuroImage, 60, 252262.CrossRefGoogle ScholarPubMed
Faillenot, I., Heckemann, R. A., Frot, M., & Hammers, A. (2017). Macroanatomy and 3D probabilistic atlas of the human insula. NeuroImage, 150, 8898.CrossRefGoogle ScholarPubMed
Fernie, G., Cole, J. C., Goudie, A. J., & Field, M. (2010). Risk-taking but not response inhibition or delay discounting predict alcohol consumption in social drinkers. Drug and Alcohol Dependence, 112, 5461.CrossRefGoogle ScholarPubMed
Franklin, T. R., Wang, J., Sciortino, N., Harper, D., Li, Y., Ehrman, R., … Childress, A. R. (2007). Limbic activation to cigarette smoking cues independent of nicotine withdrawal: A perfusion fMRI study. Neuropsychopharmacology, 32, 23012309.CrossRefGoogle ScholarPubMed
Garavan, H. (2010). Insula and drug cravings. Brain Structure and Function, 214, 593601.CrossRefGoogle ScholarPubMed
Gardini, S., & Venneri, A. (2012). Reduced grey matter in the posterior insula as a structural vulnerability or diathesis to addiction. Brain Research Bulletin, 87, 205211.CrossRefGoogle ScholarPubMed
Glasser, M. F., & Van Essen, D. C. (2011). Mapping human cortical areas in vivo based on myelin content as revealed by T1- and T2-weighted MRI. Journal of Neuroscience, 31, 1159711616.CrossRefGoogle ScholarPubMed
Gormally, J., Black, S., Daston, S., & Rardin, D. (1982). The assessment of binge eating severity among obese persons. Addictive Behaviors, 7, 4755.CrossRefGoogle ScholarPubMed
Govindarajan, S. T., Cohen-Adad, J., Sormani, M. P., Fan, A. P., Louapre, C., & Mainero, C. (2015). Reproducibility of T2* mapping in the human cerebral cortex in vivo at 7 tesla MRI. Journal of Magnetic Resonance Imaging, 42, 290296.CrossRefGoogle Scholar
Gowin, J. L., Mackey, S., & Paulus, M. P. (2013). Altered risk-related processing in substance users: Imbalance of pain and gain. Drug and Alcohol Dependence, 132, 1321.CrossRefGoogle ScholarPubMed
Haast, R. A., Ivanov, D., Formisano, E., & Uludag, K. (2016). Reproducibility and reliability of quantitative and weighted T1 and T2(*) mapping for myelin-based cortical parcellation at 7 tesla. Frontiers in Neuroanatomy, 10, 112.CrossRefGoogle ScholarPubMed
Hawkins, J. D., Catalano, R. F., & Miller, J. Y. (1992). Risk and protective factors for alcohol and other drug problems in adolescence and early adulthood: Implications for substance abuse prevention. Psychological Bulletin, 112, 64105.CrossRefGoogle ScholarPubMed
Helms, G., Dathe, H., Kallenberg, K., & Dechent, P. (2008). High-resolution maps of magnetization transfer with inherent correction for RF inhomogeneity and T1 relaxation obtained from 3D FLASH MRI. Magnetic Resonance in Medicine, 60, 13961407.CrossRefGoogle ScholarPubMed
Hodder, R. K., Campbell, E., Gilligan, C., Lee, H., Lecathelinais, C., Green, S., … Wiggers, J. (2018). Association between Australian adolescent alcohol use and alcohol use risk and protective factors in 2011 and 2014. Drug and Alcohol Review, 37, S22S33.CrossRefGoogle ScholarPubMed
Huang, H., Yamamoto, A., Hossain, M. A., Younes, L., & Mori, S. (2008). Quantitative cortical mapping of fractional anisotropy in developing rat brains. Journal of Neuroscience, 28, 14271433.CrossRefGoogle ScholarPubMed
Imel, Z. E., Wampold, B. E., Miller, S. D., & Fleming, R. R. (2008). Distinctions without a difference: Direct comparisons of psychotherapies for alcohol use disorders. Psychology of Addictive Behaviors, 22, 533543.CrossRefGoogle ScholarPubMed
Keuken, M., Bazin P-L, B., Beekhuizen, K., Himmer, S., Kandola, L., Lafeber, A., , J. J., … Turner, R. (2017). Effects of aging on T1, T2*, and QSM MRI values in the subcortex. Brain Structure and Function, 222, 24872505.CrossRefGoogle Scholar
Kim, S. G., & Knoesche, T. R. (2016). Intracortical myelination in musicians with absolute pitch: Quantitative morphometry using 7-T MRI. Human Brain Mapping, 37, 34863501.CrossRefGoogle ScholarPubMed
Kraus, S., & Rosenberg, H. (2014). The pornography craving questionnaire: Psychometric properties. Archives of Sexual Behavior, 43, 451462.CrossRefGoogle ScholarPubMed
Kriegeskorte, N., Simmons, W. K., Bellgowan, P. S., & Baker, C. I. (2009). Circular analysis in systems neuroscience: The dangers of double dipping. Nature Neuroscience, 12, 535540.CrossRefGoogle ScholarPubMed
Kwako, L. E., Momenan, R., Litten, R. Z., Koob, G. F., & Goldman, D. (2016). Addictions neuroclinical assessment: A neuroscience-based framework for addictive disorders. Biological Psychiatry, 80, 179189.CrossRefGoogle ScholarPubMed
Langkammer, C., Schweser, F., Krebs, N., Deistung, A., Goessler, W., Scheurer, E., … Reichenbach, J. R. (2012). Quantitative susceptibility mapping (QSM) as a means to measure brain iron? A post mortem validation study. NeuroImage, 62, 15931599.CrossRefGoogle Scholar
Lynam, D. R., Smith, G. T., Whiteside, S. P., & Cyders, M. A. (2006). The UPPS-P: Assessing five personality pathways to impulsive behavior. West Lafayette, IN: Purdue University.Google Scholar
Marques, J. P., Khabipova, D., & Gruetter, R. (2017). Studying cyto and myeloarchitecture of the human cortex at ultra-high field with quantitative imaging: R1, R2* and magnetic susceptibility. NeuroImage, 147, 152163.CrossRefGoogle ScholarPubMed
Marques, J. P., Kober, T., Krueger, G., van der Zwaag, W., Van de Moortele, P.-F., & Gruetter, R. (2010). MP2RAGE, A self bias-field corrected sequence for improved segmentation and T1-mapping at high field. NeuroImage, 49, 12711281.CrossRefGoogle ScholarPubMed
Mayberg, H. S., Liotti, M., Brannan, S. K., McGinnis, S., Mahurin, R. K., Jerabek, P. A., & Lancaster, J. L. (1999). Reciprocal limbic-cortical function and negative mood: Converging PET findings in depression and normal sadness. American Journal of Psychiatry, 156, 675682.CrossRefGoogle ScholarPubMed
Mechelli, A., Price, C. J., Friston, K. J., & Ashburner, J. (2005). Voxel-based morphometry of the human brain: Methods and applications. Current Medical Imaging, 1, 105113.CrossRefGoogle Scholar
Momenan, R., Steckler, L. E., Saad, Z. S., van Rafelghem, S., Kerich, M. J., & Hommer, D. W. (2012). Effects of alcohol dependence on cortical thickness as determined by magnetic resonance imaging. Psychiatry Research, 204, 101111.CrossRefGoogle ScholarPubMed
Myrick, H., Anton, R. F., Li, X., Henderson, S., Drobes, D., Voronin, K., & George, M. S. (2004). Differential brain activity in alcoholics and social drinkers to alcohol cues: Relationship to craving. Neuropsychopharmacology, 29, 393402.CrossRefGoogle ScholarPubMed
Naqvi, N. H., & Bechara, A. (2010). The insula and drug addiction: An interoceptive view of pleasure, urges, and decision-making. Brain Structure and Function, 214, 435450.CrossRefGoogle ScholarPubMed
Naqvi, N. H., Rudrauf, D., Damasio, H., & Bechara, A. (2007). Damage to the insula disrupts addiction to cigarette smoking. Science (New York, N.Y.), 315, 531534.CrossRefGoogle Scholar
Nees, F., Tzschoppe, J., Patrick, C. J., Vollstadt-Klein, S., Steiner, S., Poustka, L., … Flor, H. (2012). Determinants of early alcohol use in healthy adolescents: The differential contribution of neuroimaging and psychological factors. Neuropsychopharmacology, 37, 986995.CrossRefGoogle ScholarPubMed
Nord, C. L., Kim, S.-G., Callesen, M. B., Kvamme, T. L., Jensen, M., Pedersen, M. U., & Voon, V. (2019). The myeloarchitecture of impulsivity: Premature responding in youth is associated with decreased myelination of ventral putamen. Neuropsychopharmacology, 44, 12161223.CrossRefGoogle ScholarPubMed
Pedersen, M. U., Rømer Thomsen, K., Pedersen, M. M., & Hesse, M. (2017). Mapping risk factors for substance use: Introducing the YouthMap12. Addictive Behaviors, 65, 4050.CrossRefGoogle ScholarPubMed
Phan, K. L., Wager, T., Taylor, S. F., & Liberzon, I. (2002). Functional neuroanatomy of emotion: A meta-analysis of emotion activation studies in PET and fMRI. NeuroImage, 16, 331348.CrossRefGoogle ScholarPubMed
Pontes, H. M., & Griffiths, M. D. (2015). Measuring DSM-5 Internet gaming disorder: Development and validation of a short psychometric scale. Computers in Human Behavior, 45, 137143.CrossRefGoogle Scholar
Preuschoff, K., Bossaerts, P., & Quartz, S. R. (2006). Neural differentiation of expected reward and risk in human subcortical structures. Neuron, 51, 381390.CrossRefGoogle ScholarPubMed
Preuschoff, K., Quartz, S. R., & Bossaerts, P. (2008). Human insula activation reflects risk prediction errors as well as risk. Journal of Neuroscience, 28, 27452752.CrossRefGoogle ScholarPubMed
Rogers, R. D., Everitt, B., Baldacchino, A., Blackshaw, A., Swainson, R., Wynne, K., … Booker, E. (1999). Dissociable deficits in the decision-making cognition of chronic amphetamine abusers, opiate abusers, patients with focal damage to prefrontal cortex, and tryptophan-depleted normal volunteers: Evidence for monoaminergic mechanisms. Neuropsychopharmacology, 20, 322339.CrossRefGoogle ScholarPubMed
Rømer Thomsen, K., Callesen, M. B., Hesse, M., Kvamme, T. L., Pedersen, M. M., Pedersen, M. U., & Voon, V. (2018). Impulsivity traits and addiction-related behaviors in youth. Journal of Behavioral Addictions, 7, 317330.CrossRefGoogle ScholarPubMed
Rømer Thomsen, K., Joensson, M., Lou, H. C., Møller, A., Gross, J., Kringelbach, M. L., & Changeux, J.-P. (2013). Altered paralimbic interaction in behavioral addiction. Proceedings of the National Academy of Sciences, 110, 47444749.CrossRefGoogle ScholarPubMed
Rooney, W. D., Johnson, G., Li, X., Cohen, E. R., Kim, S. G., Ugurbil, K., & Springer, C. S Jr. (2007). Magnetic field and tissue dependencies of human brain longitudinal 1H2O relaxation in vivo. Magnetic Resonance in Medicine: An Official Journal of the International Society for Magnetic Resonance in Medicine, 57, 308318.CrossRefGoogle ScholarPubMed
Sacchet, M. D., & Gotlib, I. H. (2017). Myelination of the brain in Major Depressive Disorder: An in vivo quantitative magnetic resonance imaging study. Scientific Reports, 7, 2200.CrossRefGoogle Scholar
Saunders, J. B., Aasland, O. G., Babor, T. F., De la Fuente, J. R., & Grant, M. (1993). Development of the alcohol use disorders identification test (AUDIT): WHO collaborative project on early detection of persons with harmful alcohol consumption-II. Addiction, 88, 791804.CrossRefGoogle Scholar
Schacht, J. P., Anton, R. F., & Myrick, H. (2013). Functional neuroimaging studies of alcohol cue reactivity: A quantitative meta-analysis and systematic review. Addiction Biology, 18, 121133.CrossRefGoogle ScholarPubMed
Scheier, L. M., Botvin, G. J., & Baker, E. (1997). Risk and protective factors as predictors of adolescent alcohol involvement and transitions in alcohol use: A prospective analysis. Journal of Studies on Alcohol, 58, 652667.CrossRefGoogle ScholarPubMed
Schrouff, J., Rosa, M. J., Rondina, J. M., Marquand, A. F., Chu, C., Ashburner, J., … Mourão-Miranda, J. (2013). PRoNTo: Pattern recognition for neuroimaging toolbox. Neuroinformatics, 11, 319337.CrossRefGoogle ScholarPubMed
Schumann, G., Loth, E., Banaschewski, T., Barbot, A., Barker, G., Büchel, C., … Gallinat, J. (2010). The IMAGEN study: Reinforcement-related behaviour in normal brain function and psychopathology. Molecular Psychiatry, 15, 11281139.CrossRefGoogle ScholarPubMed
Schwartz, D. L., Mitchell, A. D., Lahna, D. L., Luber, H. S., Huckans, M. S., Mitchell, S. H., & Hoffman, W. F. (2010). Global and local morphometric differences in recently abstinent methamphetamine-dependent individuals. NeuroImage, 50, 13921401.CrossRefGoogle ScholarPubMed
Senatorov, V. V., Damadzic, R., Mann, C. L., Schwandt, M. L., George, D. T., Hommer, D. W., … Momenan, R. (2015). Reduced anterior insula, enlarged amygdala in alcoholism and associated depleted von Economo neurons. Brain, 138, 6979.CrossRefGoogle ScholarPubMed
Seo, S, Beck, A, Matthis, C, Genauck, A, Banaschewski, T, Bokde, A, … Frouin, V. (2019). Risk profiles for heavy drinking in adolescence: differential effects of gender. Addiction biology, 24(4), 787801.CrossRefGoogle ScholarPubMed
Seo, S, Mohr, J, Beck, A, Wüstenberg, T, Heinz, A, & Obermayer, K. (2015). Predicting the future relapse of alcohol-dependent patients from structural and functional brain images. Addiction biology, 20(6), 10421055.CrossRefGoogle ScholarPubMed
Stoeckel, L. E., Chai, X. J., Zhang, J., Whitfield-Gabrieli, S., & Evins, A. E. (2016). Lower gray matter density and functional connectivity in the anterior insula in smokers compared with never smokers. Addiction Biology, 21, 972981.CrossRefGoogle ScholarPubMed
Stüber, C., Morawski, M., Schäfer, A., Labadie, C., Wähnert, M., Leuze, C., … Geyer, S. (2014). Myelin and iron concentration in the human brain: A quantitative study of MRI contrast. NeuroImage, 93, 95106.CrossRefGoogle ScholarPubMed
Tapert, S. F., Brown, G. G., Baratta, M. V., & Brown, S. A. (2004). fMRI BOLD response to alcohol stimuli in alcohol dependent young women. Addictive Behaviors, 29, 3350.CrossRefGoogle ScholarPubMed
Terasawa, Y., Shibata, M., Moriguchi, Y., & Umeda, S. (2013). Anterior insular cortex mediates bodily sensibility and social anxiety. Social Cognitive and Affective Neuroscience, 8, 259266.CrossRefGoogle ScholarPubMed
Tipping, M. E. (2001). Sparse Bayesian learning and the relevance vector machine. Journal of Machine Learning Research, 1, 211244.Google Scholar
Venniro, M., Caprioli, D., Zhang, M., Whitaker, L. R., Zhang, S., Warren, B. L., … Shaham, Y. (2017). The anterior insular cortex-->central amygdala glutamatergic pathway Is critical to relapse after contingency management. Neuron, 96, 414427 e8.CrossRefGoogle Scholar
Weiskopf, N., Suckling, J., Williams, G., Correia, M., Inkster, B., Tait, R., … Lutti, A. (2013). Quantitative multi-parameter mapping of R1, PD*, MT, and R2* at 3T: A multi-center validation. Frontiers in Neuroscience, 7, 95.CrossRefGoogle Scholar
Whelan, R., Watts, R., Orr, C. A., Althoff, R. R., Artiges, E., Banaschewski, T., … Garavan, H. (2014). Neuropsychosocial profiles of current and future adolescent alcohol misusers. Nature, 512, 185189.CrossRefGoogle ScholarPubMed
Witkiewitz, K., Litten, R., & Leggio, L. (2019). Advances in the science and treatment of alcohol use disorder. Science Advances, 5, eaax4043.CrossRefGoogle ScholarPubMed
World Health Organization (2018). Global status report on alcohol and health. Retrieved from https://apps.who.int/iris/bitstream/handle/10665/274603/9789241565639-eng.pdf?ua=1.Google Scholar
Worsley, K. J., Evans, A. C., Marrett, S., & Neelin, P. (1992). A three-dimensional statistical analysis for CBF activation studies in human brain. Journal of Cerebral Blood Flow & Metabolism, 12, 900918.CrossRefGoogle Scholar
Xue, G., Lu, Z., Levin, I. P., & Bechara, A. (2010). The impact of prior risk experiences on subsequent risky decision-making: The role of the insula. NeuroImage, 50, 709716.CrossRefGoogle ScholarPubMed
Ziegler, G., Hauser, T. U., Moutoussis, M., Bullmore, E. T., Goodyer, I. M., Fonagy, P., … Dolan, R. J. (2019). Compulsivity and impulsivity traits linked to attenuated developmental frontostriatal myelination trajectories. Nature Neuroscience, 22, 992999.CrossRefGoogle ScholarPubMed
Zuckerman, M. (1994). Behavioral expressions and biosocial bases of sensation seeking. Cambridge: Cambridge university press.Google Scholar
Supplementary material: File

Weidacker et al. supplementary material

Weidacker et al. supplementary material

Download Weidacker et al. supplementary material(File)
File 592.5 KB