Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-26T01:38:31.858Z Has data issue: false hasContentIssue false

Precursors and metabolites of 5-hydroxytryptamine and dopamine in the ventricular cerebrospinal fluid of psychiatric patients

Published online by Cambridge University Press:  09 July 2009

P. K. Bridges
Affiliation:
Geoffrey Knight Psychosurgical Unit, Brook General Hospital, London, Department of Neurochemistry, Institute of Neurology, London
J. R. Bartlett
Affiliation:
Geoffrey Knight Psychosurgical Unit, Brook General Hospital, London, Department of Neurochemistry, Institute of Neurology, London
P. Sepping
Affiliation:
Geoffrey Knight Psychosurgical Unit, Brook General Hospital, London, Department of Neurochemistry, Institute of Neurology, London
B. D. Kantamaneni
Affiliation:
Geoffrey Knight Psychosurgical Unit, Brook General Hospital, London, Department of Neurochemistry, Institute of Neurology, London
G. Curzon*
Affiliation:
Geoffrey Knight Psychosurgical Unit, Brook General Hospital, London, Department of Neurochemistry, Institute of Neurology, London
*
1Address for correspondence: Dr G. Curzon, Department of Neurochemistry, Institute of Neurology, London WC1 3BG.

Synopsis

Tryptophan and 5-hydroxyindoleacetic acid (precursor and metabolite respectively of 5-hydroxytryptaminę) were determined in ventricular CSF of psychiatric patients undergoing stereotactic subcaudate tractotomy. Tyrosine and homovanillic acid (precursor and metabolite respectively of dopamine) were also determined. Results suggest an association between affective state and the above precursor amino acids with lower concentrations in primary depression and higher ones when anxiety or agitation predominate. This leads to lower 5-hydroxyindoleacetic acid concentrations in depression and higher concentrations in anxiety and agitation.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1976

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ashcroft, G. W., Crawford, T. B. B., Eccleston, D., Sharman, D. F., MacDougall, E. J., Stanton, J. B. & Binns, J. F. (1966). 5-Hydroxyindole compounds in the cerebrospinal fluid of patients with psychiatric or neurological diseases. Lancet ii, 10491052.Google Scholar
Ashcroft, G. W., Blackburn, I. M., Eccleston, D., Glen, A. I. M., Hartley, W., Kinloch, N. E., Lonergan, M., Murray, L. G. & Pullar, I. A. (1973). Changes on recovery in the concentrations of tryptophan and the biogenic amine metabolites in the cerebrospinal fluid of patients with affective illness. Psychological Medicine 3, 319325.Google Scholar
Bloxam, D. L. & Warren, W. H. (1974). Error in the determination of tryptophan by the method of Denckla and Dewey. A revised procedure. Analytical Biochemistry 60, 621625.Google Scholar
Bridges, P. K. & Bartlett, J. R. (1973). The work of a psycho-surgical unit. Postgraduate Medical Journal 49, 855859.Google Scholar
Broadhurst, A. D. (1970). L-Tryptophan versus ECT. Lancet i, 13921393.Google Scholar
Carroll, B. J., Mowbray, R. M. & Davies, B. (1970). Sequential comparison of l-tryptophan with ECT in severe depression. Lancet i, 967969.Google Scholar
Coppen, A., Shaw, D. M., Herzberg, B. & Maggs, R. (1967). Tryptophan in the treatment of depression. Lancet ii, 11781180.Google Scholar
Coppen, A., Brooksbank, B. W. L. & Peet, M. (1972). Tryptophan concentration in the cerebrospinal fluid of depressive patients. Lancet i, 1393.CrossRefGoogle Scholar
Coppen, A., Eccleston, E. G. & Peet, M. (1973). Total and free tryptophan concentration in the plasma of depressive patients. Lancet ii, 6063.Google Scholar
Curzon, G. & Knott, P.J. (1974). Fatty acids and the disposition of tryptophan. In Aromatic Amino Acids in the Brain (ed. Wurtman, R. J.), pp. 218229. Ciba Foundation Symposium.Google Scholar
Curzon, G., Godwin-Austen, R. B., Tomlinson, E. B. & Kantamaneni, B. D. (1970). The cerebrospinal fluid homo-vanillic acid concentration in patients with Parkinsonism treated with L-dopa. Journal of Neurology, Neurosurgery and Psychiatry 33, 16.Google Scholar
Dominic, J. A., Sinha, A. K. & Barchas, J. D. (1975). Effect of benzodiazepine compounds on brain amine metabolism. European Journal of Pharmacology 32, 124127.Google Scholar
Eccleston, D., Ashcroft, G. W., Crawford, T. B. B., Stanton, J. B., Wood, D. & McTurk, P. H. (1970). Effect of tryptophan administration on 5HIAA in cerebrospinal fluid in man. Journal of Neurology, Neurosurgery and Psychiatry 33, 269272.CrossRefGoogle ScholarPubMed
Faires, R. A. & Parkes, B. H. (1960). Radioisotope Laboratory Techniques, 2nd ed., p. 165. Newnes: London.Google Scholar
Fernstrom, J. D., Shabshelowitz, H. & Faller, D. V. (1974). Diazepam increases 5-hydroxyindole concentrations in rat brain and spinal cord. Life Sciences 15, 15771584.Google Scholar
Friedman, P. A., Kappelman, A. H. & Kaufman, S. (1972). Partial purification and characterization of tryptophan hydroxylase from rabbit hindbrain. Journal of Biological Chemistry 247, 41654173.Google Scholar
Garelis, E., Young, S. N., Lal, S. & Sourkes, T. L. (1974). Monoamine metabolites in lumbar CSF: the question of their origin in relation to clinical studies. Brain Research 79, 18.CrossRefGoogle ScholarPubMed
Gessa, G. L. & Tagliamonte, A. (1974). Possible role of free serum tryptophan in the control of brain tryptophan level and serotonin synthesis. Advances in Biochemical Psycho-pharmacy 11, 119131.Google ScholarPubMed
Göktepe, E. O., Young, L. B. & Bridges, P. K. (1975). A further review of the results of stereotactic subcaudate tractotomy. British Journal Psychiatry 126, 270280.Google Scholar
Herrington, R. N., Bruce, A., Johnstone, E. C. & Lader, M. H. (1974). Comparative trial of L-tryptophan and ECT in severe depressive illness. Lancet ii, 731734.CrossRefGoogle Scholar
Knight, G. C. (1969). Bi-frontal stereotactic tractotomy: an atraumatic operation of value in the treatment of intractable psychoneurosis. British Journal of Psychiatry 115 257266.Google Scholar
Korf, J. & Valkenburgh-Sikkema, T. (1969). Fluorimetric determination of 5-hydroxyindoleacetic acid in human urine and cerebrospinal fluid. Clinica chimica acta 26, 301306.CrossRefGoogle ScholarPubMed
Modigh, K. (1975). The relationship between the concentrations of tryptophan and 5-hydroxyindoleacetic acid in rat brain and cerebrospinal fluid. Journal of Neurochemistry 25, 351352.Google Scholar
Post, R. M., Kotin, J., Goodwin, F. K. & Gordon, E. K. (1973). Psychomotor activity and cerebrospinal fluid amine metabolites in affective illness. American Journal of Psychiatry 130, 6772.CrossRefGoogle ScholarPubMed
Waalkes, T. P. & Udenfriend, S. (1957). A fluorometric method for the estimation of tyrosine in plasma and tissues. Journal of Laboratory and Clinical Medicine 50, 733736.Google Scholar
West, K. A., Edvinsson, L., Nielsen, K. C. & Roos, B. E. (1972). Concentration of acid monoamine metabolites in ventricular CSF of patients with posterior fossa tumours. In Intracranial Pressure (ed. Brock, M. & Dietz, H.), pp. 331337. Springer: Berlin.Google Scholar
Young, S. N., Garelis, E., Lal, S., Martin, J. B., Molina-Negro, P., Ethier, R. & Sourkes, T. L. (1974). Tryptophan and 5-hydroxyindoleacetic acid in human cerebrospinal fluid. Journal of Neurochemistry 22, 777779.CrossRefGoogle ScholarPubMed
Young, S. N., Lal, S., Sourkes, T. L., Feldmuller, F., Aronoff, A. & Martin, J. B. (1975). Relationships between tryptophan in serum and CSF, and 5-hydroxyindoleacetic acid in CSF of man: effect of cirrhosis of liver and probenecid administration. Journal of Neurology, Neurosurgery and Psychiatry 38, 322330.Google Scholar