Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-02T20:22:06.931Z Has data issue: false hasContentIssue false

MRI in schizophrenia: basal ganglia and white matter T1 times

Published online by Cambridge University Press:  09 July 2009

I. Harvey
Affiliation:
Institute of Neurology; Institute of Psychiatry; and Charing Cross & Westminster Medical School, London
M. A. Ron*
Affiliation:
Institute of Neurology; Institute of Psychiatry; and Charing Cross & Westminster Medical School, London
R. Murray
Affiliation:
Institute of Neurology; Institute of Psychiatry; and Charing Cross & Westminster Medical School, London
S. Lewis
Affiliation:
Institute of Neurology; Institute of Psychiatry; and Charing Cross & Westminster Medical School, London
G. Barker
Affiliation:
Institute of Neurology; Institute of Psychiatry; and Charing Cross & Westminster Medical School, London
D. McManus
Affiliation:
Institute of Neurology; Institute of Psychiatry; and Charing Cross & Westminster Medical School, London
*
1 Address for correspondence: Dr M. A. Ron, Institute of Neurology, Queen Square, London WC1N 3BG.

Synopsis

The T1 relaxation time of the basal ganglia (putamen, globus pallidus and head of caudate) and of the frontoparietal centrum semiovale was compared between 49 schizophrenic patients and 36 healthy controls. Previous reports of increased T1 time in the basal ganglia were not confirmed, and group differences were not detected within the white matter. Within patients T1 values could not be related to tardive dyskinesia or other clinical features. Normal variation seen in basal ganglia T1 times is described for the first time: lowest values occur in the globus pallidus and highest in the caudate, and values within the putamen increase rostrally.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andreasen, N. C., Endicott, J., Spitzer, R. L. & Winokur, G. (1977). The family history method using diagnostic criteria. Archives of General Psychiatry 34, 12291235.CrossRefGoogle ScholarPubMed
Annett, M. (1970). A classification of hand preference by association analysis. British Journal of Psychology 61, 303321.CrossRefGoogle ScholarPubMed
Barnes, D., McDonald, W. I., Landon, D. N. & Johnson, G. (1988). The characterization of experimental gliosis by quantitative nuclear magnetic resonance imaging. Brain 111, 8394.CrossRefGoogle ScholarPubMed
Barnes, D., Harvey, I., McDonald, W. I., Ron, M. A. & Moore, S. (1991). The effect of chlorpromazine and methyl prednisolone on relaxation times in the cat brain. Magnetic Resonance in Medicine (in the press).CrossRefGoogle Scholar
Besson, J. A., Corrigan, F. M., Foreman, E. I., Ashcroft, G. W. & Smith, F. W. (1948). T1 changes in schizophrenic disorders measured by proton NMR,Abstracts of the 3rd Annual Meeting of the Society of Magnetic Resonance in Medicine, pp. 4748. New York, 08 13–17 1984.Google Scholar
Besson, J. A., Corrigan, F. M., Cherryman, G. R. & Smith, F. W. (1987). Nuclear magnetic resonance brain imaging in chronic schizophrenia. British Journal of Psychiatry 150, 161163.CrossRefGoogle ScholarPubMed
Bogerts, B., Falkai, P., Haupts, M., Weyergraf, M., Greve, B., Tapernon-Franz, U. & Heinzmann, U. (1990). Basal ganglia and limbic system pathology in chronic schizophrenia: a replication study in a new brain collection. Proceedings of the 8th World Congress of Psychiatry, Athens 1989. Elsevier: Amsterdam.Google Scholar
Breger, R. K., Wehrli, F. W., Charles, H. C., MacFall, J. R. & Haughton, V. M. (1986). Reproduction of relaxation and spin-density parameters in phantoms and human brain measured by MR imaging at 1·5 T. Magnetic Resonance in Medicine 3, 649662.CrossRefGoogle Scholar
Brown, R., Colter, N., Corsellis, J. A. N., Crow, T. J., Frith, C. D., Jagoe, R., Johnstone, E. C. & Marsh, L. (1986). Post mortem evidence of structural brain changes in schizophrenia. Archives of General Psychiatry 43, 3642.CrossRefGoogle Scholar
Bruton, C. J., Crow, T. J., Frith, C. D., Johnstone, E. C., Owens, D. G. & Roberts, G. W. (1990). Schizophrenia and the brain: a prospective clinico-neuropathological study. Psychological Medicine 20, 285304.CrossRefGoogle Scholar
Cannon-Spoor, H. E., Potkin, S. & Wyatt, J. (1982). Measurement of premorbid adjustment in chronic schizophrenia. Schizophrenia Bulletin 8, 470484.CrossRefGoogle ScholarPubMed
Christie, J. E., Kean, D. M., Douglas, R. H., Engelman, H. M., St Clair, D. & Blackburn, I. M. (1988). Magnetic resonance imaging in pre-senile dementia of the Alzheimer type, multi-infarct dementia and Korsakoff's syndrome. Psychological Medicine 18, 319329.CrossRefGoogle ScholarPubMed
Coffman, J. A., Schwarzkopf, S. B., Nasrallah, H. A., Bornstein, R. A. & Olson, S. C. (1989). Temporal lobe asymmetry in schizophrenics by coronal MRI. Biological Psychiatry 25, 97A98A.CrossRefGoogle Scholar
Fujimoto, T., Yokoyama, Y., Fujimoto, A., Yamamoto, K., Okada, A., Asakura, T. & Igata, A. (1984). Spin-lattice relaxation time measurement in schizophrenic disorders.Abstracts of the 3rd Annual Meeting of the Society of Magnetic Resonance in Medicine, p. 239. New York, August 13–17 1984.Google Scholar
Fujimoto, T., Yokoyama, Y., Okada, A., Kenemaru, R., Kihara, Y., Watanabe, K., Asakura, T. & Igata, A. (1985). T1 measurement in schizophrenic disorders. Japanese Journal of Medical Imaging 4, 10331039.Google Scholar
Fujimoto, T., Nakano, T., Fujii, M., Okada, A., Harada, K., Yokoyama, Y., Uchida, T., Tsuji, T.,Igata, A. & Asakura, T. (1987). Changes in proton T1 in dog brains due to the administration of haloperidol. Magnetic Resonance Imaging 5, 469474.CrossRefGoogle Scholar
Garber, H. J., Anath, J. V., Chiu, L. C., Griswold, V. J. & Oldendorf, W. H. (1989). Nuclear magnetic resonance study of obsessive compulsive disorder. American Journal of Psychiatry 146, 10011005.Google ScholarPubMed
Goldthorpe, J. H. & Hope, K. (1974). The Social Grading of Occupation – A New Approach and Scale. Clarendon Press: Oxford.Google Scholar
Guy, W. (1976). ECDEU Assessment Manual for Psychopharmacology, pp. 534537. US Public Health Service: Washington DC.Google Scholar
Harvey, I., Morris, J., Tofts, P. & Wicks, D. (1991). Sources of T1 variation in normal appearing white matter. Magnetic Resonance Imaging (in the press).CrossRefGoogle Scholar
Iager, A.-C., Kirch, D. G. & Wyatt, R. J. (1985). A negative symptom rating scale. Psychiatry Research 16, 2736.CrossRefGoogle ScholarPubMed
Jablensky, A., Cooper, J. E., Tomov, T., Schwarz, R., Biehl, H., Giel, R., Ibrahim, H. H., Isele, R., Krumm, B., Ozturk, O. M., Savasir, I., Schubart, C. & Wiersma, D. (1985). A Procedure and Schedule for the Assessment of Disability in Patients with Severe Psychiatric Disorders. World Health Organization: Geneva.Google Scholar
Johnson, G., Ormerod, I. E. C., Barnes, D., Tofts, P. S. & MacManus, D. (1987). Accuracy and precision in the measurements of relaxation times from nuclear magnetic resonance images. British Journal of Radiology 60, 143153.CrossRefGoogle ScholarPubMed
Kelsoe, J. R., Cadet, J. L., Pickar, D. & Weinberger, D. R. (1988). Quantitative neuroanatomy in schizophrenia. Archives of General Psychiatry 45, 533541.CrossRefGoogle ScholarPubMed
Kjos, B. O., Ehman, R. L. & Brant-Zawadzki, M. (1985). Reproducibility of relaxation times and spin density calculated from routine MR imaging sequences: clinical study of the CNS. American Journal of Roentgenology 144, 11651170.CrossRefGoogle ScholarPubMed
Lewis, S. W., Owen, M. J. & Murray, R. M. (1989). Obstetric complications and schizophrenia: methodology and mechanisms. In Schizophrenia: A Scientific Focus (ed. Schultz, S. C.), pp. 5668. Oxford University Press: New York.Google Scholar
McKenna, P. J. (1987). Pathology, phenomenology and the dopamine hypothesis of schizophrenia. British Journal of Psychiatry 151, 288301.CrossRefGoogle ScholarPubMed
McManus, D. G., Kermode, A. G. & Tofts, P. S. (1989). A repositioning technique for cerebral magnetic resonance imaging of patients with multiple sclerosis.Society of Magnetic Resonance in Medicine, 8th Annual Meeting,Amsterdam,1989. Abstract Volume 2, p. 617.Google Scholar
Mathur-De Vre, R. (1984). Biomedical implications of the relaxation behaviour of water related to NMR imaging. British Journal of Radiology 57, 955976.CrossRefGoogle ScholarPubMed
Miller, D. H., Johnson, G., Tofts, P. S., McManus, D. G. & McDonald, W. I. (1989). Precise relaxation time measurements of normal appearing white matter in inflammatory central nervous system disease. Magnetic Resonance in Medicine 11, 331336.CrossRefGoogle ScholarPubMed
Nelson, H. E. & O'Connell, A. (1978). Dementia: the estimation of premorbid intelligence levels using the new adult reading test. Cortex 14, 234244.CrossRefGoogle ScholarPubMed
Norusis, M. J. (1988). SPSS/PC+Advanced Statistics V2.0. SPSS Inc: Chicago, Illinois.Google Scholar
Robb, R. A. & Barillot, C. (1989). Interactive display and analysis of 3-D medical images. IEEE Transactions on Medical Imaging 8, 217226.CrossRefGoogle ScholarPubMed
Roberts, G. W., Colter, N., Lofthouse, R., Johnstone, E. C. & Crow, T. J. (1987). Is there gliosis in schizophrenia? Investigation of the temporal lobe. Biological Psychiatry 22, 14591468.CrossRefGoogle ScholarPubMed
Rossi, A., Stratta, P., Galluci, M., Amicarelli, I., Passariello, R. & Casacchia, M. (1988). Standardised magnetic resonance image intensity study in schizophrenia. Psychiatry Research 25, 223231.CrossRefGoogle ScholarPubMed
Smith, R. C., Baumgartner, R. & Calderon, M. (1987). Magnetic resonance imaging studies of the brains of schizophrenic patients. Psychiatry Research 20, 3346.CrossRefGoogle ScholarPubMed
Spitzer, R. L., Endicott, J. & Robins, E. (1978). Research Diagnostic Criteria (RDC) for a Selected Group of Functional Psychoses, 3rd ed.Biometrics Research Division, New York State Psychiatric Institute: New York.Google Scholar
Stevens, C. D., Altschuler, L. L., Bogerts, B. & Falkai, P. (1988). Quantitative study of gliosis in schizophrenia and Huntington's chorea. Biological Psychiatry 24, 697700.CrossRefGoogle ScholarPubMed
Stevens, J., Casanova, M. & Bigelow, L. (1988). Gliosis in schizophrenia. Biological Psychiatry 24, 721734.CrossRefGoogle ScholarPubMed
Suddath, R. L., Casanova, M. F., Goldberg, T. E., Daniel, D. G., Kelsoe, J. R. & Weinberger, D. R. (1989). Temporal lobe pathology in schizophrenia: a quantitative magnetic resonance imaging study. American Journal of Psychiatry 146, 464472.Google ScholarPubMed
Talairach, J. & Szikla, G. (1967). Atlas of Stereotaxic Anatomy of the Telencephalon. Anatomo-Radiological Studies. Masson: Paris.Google Scholar
Wing, J. K., Cooper, J. E. & Sartorius, N. (1974). The Measurement and Classification of Psychiatric Symptoms. Cambridge University Press: Cambridge.Google Scholar