Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-24T17:58:19.629Z Has data issue: false hasContentIssue false

Heritable anisotropy associated with cognitive impairments among patients with schizophrenia and their non-psychotic relatives in multiplex families

Published online by Cambridge University Press:  03 September 2020

K. M. Prasad*
Affiliation:
Departments of Psychiatry and Bioengineering, University of Pittsburgh, VA Pittsburgh Healthcare System, Pittsburgh, PA, USA
J. Gertler
Affiliation:
Departments of Psychiatry and Bioengineering, University of Pittsburgh, VA Pittsburgh Healthcare System, Pittsburgh, PA, USA
S. Tollefson
Affiliation:
Departments of Psychiatry and Bioengineering, University of Pittsburgh, VA Pittsburgh Healthcare System, Pittsburgh, PA, USA
J. A. Wood
Affiliation:
Departments of Psychiatry and Bioengineering, University of Pittsburgh, VA Pittsburgh Healthcare System, Pittsburgh, PA, USA
D. Roalf
Affiliation:
Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
R. C. Gur
Affiliation:
Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
R. E. Gur
Affiliation:
Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
L. Almasy
Affiliation:
Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA
M. F. Pogue-Geile
Affiliation:
Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA
V. L. Nimgaonkar
Affiliation:
Departments of Psychiatry and Bioengineering, University of Pittsburgh, VA Pittsburgh Healthcare System, Pittsburgh, PA, USA Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, PA, USA VA Pittsburgh Healthcare System, Pittsburgh, PA, USA
*
Author for correspondence: K. M. Prasad, E-mail: [email protected]

Abstract

Background

To test the functional implications of impaired white matter (WM) connectivity among patients with schizophrenia and their relatives, we examined the heritability of fractional anisotropy (FA) measured on diffusion tensor imaging data acquired in Pittsburgh and Philadelphia, and its association with cognitive performance in a unique sample of 175 multigenerational non-psychotic relatives of 23 multiplex schizophrenia families and 240 unrelated controls (total = 438).

Methods

We examined polygenic inheritance (h2r) of FA in 24 WM tracts bilaterally, and also pleiotropy to test whether heritability of FA in multiple WM tracts is secondary to genetic correlation among tracts using the Sequential Oligogenic Linkage Analysis Routines. Partial correlation tests examined the correlation of FA with performance on eight cognitive domains on the Penn Computerized Neurocognitive Battery, controlling for age, sex, site and mother's education, followed by multiple comparison corrections.

Results

Significant total additive genetic heritability of FA was observed in all three-categories of WM tracts (association, commissural and projection fibers), in total 33/48 tracts. There were significant genetic correlations in 40% of tracts. Diagnostic group main effects were observed only in tracts with significantly heritable FA. Correlation of FA with neurocognitive impairments was observed mainly in heritable tracts.

Conclusions:

Our data show significant heritability of all three-types of tracts among relatives of schizophrenia. Significant heritability of FA of multiple tracts was not entirely due to genetic correlations among the tracts. Diagnostic group main effect and correlation with neurocognitive performance were mainly restricted to tracts with heritable FA suggesting shared genetic effects on these traits.

Type
Original Article
Copyright
Copyright © The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

These authors equally contributed to this work

References

Abboud, R., Noronha, C., & Diwadkar, V. A. (2017). Motor system dysfunction in the schizophrenia diathesis: Neural systems to neurotransmitters. European psychiatry: the Journal of the Association of European Psychiatrists, 44, 125133. doi: 10.1016/j.eurpsy.2017.04.004.CrossRefGoogle ScholarPubMed
Alfimova, M., & Uvarova, L. (2003). Cognitive peculiarities in relatives of schizophrenic and schizoaffective patients: Heritability and resting EEG-correlates. International Journal of Psychophysiology, 49(3), 201216. doi: 10.1016/s0167-8760(03)00133-8.CrossRefGoogle ScholarPubMed
Allison, D. B., Neale, M. C., Zannolli, R., Schork, N. J., Amos, C. I., & Blangero, J. (1999). Testing the robustness of the likelihood-ratio test in a variance-component quantitative-trait loci-mapping procedure. American Journal of Human Genetics, 65(2), 531544. doi: 10.1086/302487.CrossRefGoogle Scholar
Alloza, C., Cox, S. R., Duff, B., Semple, S. I., Bastin, M. E., Whalley, H. C., & Lawrie, S. M. (2016). Information processing speed mediates the relationship between white matter and general intelligence in schizophrenia. Psychiatry Research: Neuroimaging, 254, 2633. doi: 10.1016/j.pscychresns.2016.05.008.CrossRefGoogle Scholar
Almasy, L., & Blangero, J. (1998). Multipoint quantitative-trait linkage analysis in general pedigrees. American Journal of Human Genetics, 62(5), 11981211.CrossRefGoogle ScholarPubMed
Almasy, L., Gur, R. C., Haack, K., Cole, S. A., Calkins, M. E., Peralta, J. M., … Gur, R. E. (2008). A genome screen for quantitative trait loci influencing schizophrenia and neurocognitive phenotypes. American Journal of Psychiatry, 165(9), 11851192. doi: 10.1176/appi.ajp.2008.07121869.CrossRefGoogle ScholarPubMed
Beaulieu, C. (2002). The basis of anisotropic water diffusion in the nervous system - a technical review. NMR in biomedicine, 15(78), 435455. doi:10.1002/nbm.782.CrossRefGoogle ScholarPubMed
Beaulieu, C., & Allen, P. S. (1994). Determinants of anisotropic water diffusion in nerves. Magnetic resonance in medicine: official journal of the Society of Magnetic Resonance in Medicine / Society of Magnetic Resonance in Medicine, 31(4), 394400. doi: 10.1002/mrm.1910310408.CrossRefGoogle ScholarPubMed
Beg, M. F., Miller, M. I., Trouve, A., & Younes, L. (2005). Computing large deformation metric mappings via geodesic flows of diffeomorphisms. International Journal of Computer Vision, 61(2), 139157.CrossRefGoogle Scholar
Bertisch, H., Li, D., Hoptman, M. J., & Delisi, L. E. (2010). Heritability estimates for cognitive factors and brain white matter integrity as markers of schizophrenia. American Journal of Medical Genetics Part B-Neuropsychiatric Genetics, 153B(4), 885894. doi: 10.1002/ajmg.b.31054.CrossRefGoogle ScholarPubMed
Blangero, J., Williams, J. T., & Almasy, L. (2000). Robust LOD scores for variance component-based linkage analysis. Genetic Epidemiology, 19(Suppl 1), S814. doi: 10.1002/1098-2272(2000)19:1+<::AID-GEPI2>3.0.CO;2-Y.3.0.CO;2-Y>CrossRefGoogle ScholarPubMed
Bohlken, M. M., Brouwer, R. M., Mandl, R. C., Kahn, R. S., & Hulshoff Pol, H. E. (2016). Genetic variation in schizophrenia liability is shared with intellectual ability and brain structure. Schizophrenia Bulletin, 42(5), 11671175. doi: 10.1093/schbul/sbw034.CrossRefGoogle ScholarPubMed
Bohlken, M. M., Brouwer, R. M., Mandl, R. C., Van den Heuvel, M. P., Hedman, A. M., De Hert, M., … Hulshoff Pol, H. E. (2016). Structural brain connectivity as a genetic marker for schizophrenia. JAMA Psychiatry, 73(1), 1119. doi: 10.1001/jamapsychiatry.2015.1925.CrossRefGoogle Scholar
Boos, H. B., Mandl, R. C., van Haren, N. E., Cahn, W., van Baal, G. C., Kahn, R. S., & Hulshoff Pol, H. E. (2013). Tract-based diffusion tensor imaging in patients with schizophrenia and their non-psychotic siblings. European Neuropharmacology, 23(4), 295304. doi: 10.1016/j.euroneuro.2012.05.015.CrossRefGoogle ScholarPubMed
Bora, E., Fornito, A., Radua, J., Walterfang, M., Seal, M., Wood, S. J., … Pantelis, C. (2011). Neuroanatomical abnormalities in schizophrenia: A multimodal voxelwise meta-analysis and meta-regression analysis. Schizophrenia Research, 127(1–3), 4657. doi: 10.1016/j.schres.2010.12.020.CrossRefGoogle ScholarPubMed
Caprihan, A., Jones, T., Chen, H. J., Lemke, N., Abbott, C., Qualls, C., … Bustillo, J. R. (2015). The paradoxical relationship between white matter, psychopathology and cognition in schizophrenia: A diffusion tensor and proton spectroscopic imaging study. Neuropsychopharmacology, 40(9), 22482257. doi: 10.1038/npp.2015.72.CrossRefGoogle ScholarPubMed
Catani, M., & Thiebaut de Schotten, M. (2008). A diffusion tensor imaging tractography atlas for virtual in vivo dissections. Cortex, 44(8), 11051132. doi: 10.1016/j.cortex.2008.05.004.CrossRefGoogle ScholarPubMed
Chiang, M. C., Barysheva, M., Shattuck, D. W., Lee, A. D., Madsen, S. K., Avedissian, C., … Thompson, P. M. (2009). Genetics of brain fiber architecture and intellectual performance. The Journal of neuroscience: the Official Journal of the Society for Neuroscience, 29(7), 22122224. doi: 10.1523/JNEUROSCI.4184-08.2009.CrossRefGoogle ScholarPubMed
Dickinson, D., Ramsey, M. E., & Gold, J. M. (2007). Overlooking the obvious: A meta-analytic comparison of digit symbol coding tasks and other cognitive measures in schizophrenia. Archives Of General Psychiatry, 64(5), 532542. doi: 10.1001/archpsyc.64.5.532.CrossRefGoogle Scholar
Ellison-Wright, I., & Bullmore, E. (2009). Meta-analysis of diffusion tensor imaging studies in schizophrenia. Schizophrenia Research, 108(1–3), 310. doi: 10.1016/j.schres.2008.11.021.CrossRefGoogle Scholar
Francis, A. N., Bhojraj, T. S., Prasad, K. M., Kulkarni, S., Montrose, D. M., Eack, S. M., & Keshavan, M. S. (2011). Abnormalities of the corpus callosum in non-psychotic high-risk offspring of schizophrenia patients. Psychiatry Research, 191(1), 915. doi: 10.1016/j.pscychresns.2010.09.007.CrossRefGoogle ScholarPubMed
Friston, K. J., & Frith, C. D. (1995). Schizophrenia: A disconnection syndrome? Clinical Neuroscience, 3(2), 8997. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/7583624.Google ScholarPubMed
Fujino, J., Takahashi, H., Miyata, J., Sugihara, G., Kubota, M., Sasamoto, A., … Murai, T. (2014). Impaired empathic abilities and reduced white matter integrity in schizophrenia. Progress in Neuropsychopharmacology and Biological Psychiatry, 48, 117123. doi: 10.1016/j.pnpbp.2013.09.018.CrossRefGoogle Scholar
Gottesman, I. I. (1991). Schizophrenia genesis: The origins of madness. New York: W. H. Freeman.Google Scholar
Gottesman, I. I., & Gould, T. D. (2003). The endophenotype concept in psychiatry: Etymology and strategic intentions. American Journal of Psychiatry, 160(4), 636645. doi: 10.1176/appi.ajp.160.4.636.CrossRefGoogle ScholarPubMed
Gur, R. E., Nimgaonkar, V. L., Almasy, L., Calkins, M. E., Ragland, D., Pogue-Geile, M. F., … Gur, R. C. (2007). Neurocogntive endophenotypes in a multiplex multigenerational family study of schizophrenia. American Journal of Psychiatry, 164(5), 813819.CrossRefGoogle Scholar
Hamoda, H. M., Makhlouf, A. T., Fitzsimmons, J., Rathi, Y., Makris, N., Mesholam-Gately, R. I., … Shenton, M. E. (2019). Abnormalities in thalamo-cortical connections in patients with first-episode schizophrenia: A two-tensor tractography study. Brain Imaging Behavior, 13(2), 472481. doi: 10.1007/s11682-018-9862-8.CrossRefGoogle ScholarPubMed
Hasan, K. M. (2006). Diffusion tensor eigenvalues or both mean diffusivity and fractional anisotropy are required in quantitative clinical diffusion tensor MR reports: Fractional anisotropy alone is not sufficient. Radiology, 239(2), 611612; author reply 612–613. doi:10.1148/radiol.2392051172.CrossRefGoogle Scholar
Henry, J. D., & Crawford, J. R. (2005). A meta-analytic review of verbal fluency deficits in schizophrenia relative to other neurocognitive deficits. Cognitive Neuropsychiatry, 10(1), 133. doi: 10.1080/13546800344000309.CrossRefGoogle ScholarPubMed
Hilker, R., Helenius, D., Fagerlund, B., Skytthe, A., Christensen, K., Werge, T. M., … Glenthoj, B. (2018). Heritability of schizophrenia and schizophrenia Spectrum based on the nationwide danish twin register. Biological Psychiatry, 83(6), 492498. doi: 10.1016/j.biopsych.2017.08.017.CrossRefGoogle ScholarPubMed
Hogarty, G. E., Flesher, S., Ulrich, R., Carter, M., Greenwald, D., Pogue-Geile, M., … Zoretich, R. (2004). Cognitive enhancement therapy for schizophrenia: Effects of a 2-year randomized trial on cognition and behavior. Archives Of General Psychiatry, 61(9), 866876. doi: 10.1001/archpsyc.61.9.866.CrossRefGoogle ScholarPubMed
Hubbard, L., Tansey, K. E., Rai, D., Jones, P., Ripke, S., Chambert, K. D., … Zammit, S. (2016). Evidence of common genetic overlap between schizophrenia and cognition. Schizophrenia Bulletin, 42(3), 832842. doi: 10.1093/schbul/sbv168.CrossRefGoogle ScholarPubMed
Hulshoff Pol, H. E., Brans, R. G., van Haren, N. E., Schnack, H. G., Langen, M., Baare, W. F., … Kahn, R. S. (2004). Gray and white matter volume abnormalities in monozygotic and same-gender dizygotic twins discordant for schizophrenia. Biological Psychiatry, 55(2), 126130. doi: 10.1016/s0006-3223(03)00728-5.CrossRefGoogle Scholar
Hulshoff Pol, H. E., Schnack, H. G., Mandl, R. C., Brans, R. G., van Haren, N. E., Baare, W. F., … Kahn, R. S. (2006). Gray and white matter density changes in monozygotic and same-sex dizygotic twins discordant for schizophrenia using voxel-based morphometry. Neuroimage, 31(2), 482488. doi: 10.1016/j.neuroimage.2005.12.056.CrossRefGoogle ScholarPubMed
Jenkinson, M., Beckmann, C. F., Behrens, T. E. J., Woolrich, M. W., & Smith, S. M. (2012). FSL. Neuroimage, 62(2), 782790. doi: 10.1016/j.neuroimage.2011.09.015.CrossRefGoogle ScholarPubMed
Kanaan, R. A., Picchioni, M. M., McDonald, C., Shergill, S. S., & McGuire, P. K. (2017). White matter deficits in schizophrenia are global and don't progress with age. Australia New Zealand Journal of Psychiatry, 51(10), 10201031. doi: 10.1177/0004867417700729.CrossRefGoogle ScholarPubMed
Kelly, S., Jahanshad, N., Zalesky, A., Kochunov, P., Agartz, I., Alloza, C., … Donohoe, G. (2018). Widespread white matter microstructural differences in schizophrenia across 4322 individuals: Results from the ENIGMA schizophrenia DTI working group. Molecular Psychiatry, 23(5), 12611269. doi: 10.1038/mp.2017.170.CrossRefGoogle ScholarPubMed
Keshavan, M. S., Prasad, K. M., & Pearlson, G. (2007). Are brain structural abnormalities useful as endophenotypes in schizophrenia? International Review of Psychiatry, 19(4), 397406, doi:780490359 [pii]; 10.1080/09540260701486233.CrossRefGoogle Scholar
Knochel, C., Schmied, C., Linden, D. E., Stablein, M., Prvulovic, D., de, A. d. C. L., … Oertel-Knochel, V. (2016). White matter abnormalities in the fornix are linked to cognitive performance in SZ but not in BD disorder: An exploratory analysis with DTI deterministic tractography. Journal of Affective Disorders, 201, 6478. doi: 10.1016/j.jad.2016.03.015.CrossRefGoogle Scholar
Knowles, E. E., David, A. S., & Reichenberg, A. (2010). Processing speed deficits in schizophrenia: Reexamining the evidence. American Journal of Psychiatry, 167(7), 828835. doi: 10.1176/appi.ajp.2010.09070937.CrossRefGoogle ScholarPubMed
Kochunov, P., Fu, M., Nugent, K., Wright, S. N., Du, X., Muellerklein, F., … Hong, L. E. (2016). Heritability of complex white matter diffusion traits assessed in a population isolate. Human Brain Mapping, 37(2), 525535. doi: 10.1002/hbm.23047.CrossRefGoogle Scholar
Kochunov, P., Jahanshad, N., Marcus, D., Winkler, A., Sprooten, E., Nichols, T. E., … Van Essen, D. C. (2015). Heritability of fractional anisotropy in human white matter: A comparison of human connectome project and ENIGMA-DTI data. Neuroimage, 111, 300311. doi: 10.1016/j.neuroimage.2015.02.050.CrossRefGoogle ScholarPubMed
Kubicki, M., Park, H., Westin, C. F., Nestor, P. G., Mulkern, R. V., Maier, S. E., … Shenton, M. E. (2005). DTI And MTR abnormalities in schizophrenia: Analysis of white matter integrity. Neuroimage, 26(4), 11091118. doi: 10.1016/j.neuroimage.2005.03.026.CrossRefGoogle ScholarPubMed
Lee, S. J., Steiner, R. J., Luo, S., Neale, M. C., Styner, M., Zhu, H., & Gilmore, J. H. (2015). Quantitative tract-based white matter heritability in twin neonates. Neuroimage, 111, 123135. doi: 10.1016/j.neuroimage.2015.02.021.CrossRefGoogle ScholarPubMed
Mamah, D., Ji, A., Rutlin, J., & Shimony, J. S. (2019). White matter integrity in schizophrenia and bipolar disorder: Tract- and voxel-based analyses of diffusion data from the connectom scanner. NeuroImage: Clinical, 21, 101649. doi: 10.1016/j.nicl.2018.101649.CrossRefGoogle ScholarPubMed
Miller, M. I., Priebe, C. E., Qiu, A., Fischl, B., Kolasny, A., Brown, T., … Morphometry, B. (2009). Collaborative computational anatomy: An MRI morphometry study of the human brain via diffeomorphic metric mapping. Human Brain Mapping, 30(7), 21322141. doi: 10.1002/hbm.20655.CrossRefGoogle Scholar
Nurnberger, J. I. Jr., Blehar, M. C., Kaufmann, C. A., York-Cooler, C., Simpson, S. G., Harkavy-Friedman, J., & …Reich, T. (1994). Diagnostic interview for genetic studies. Rationale, unique features, and training. NIMH genetics initiative. Archives Of General Psychiatry, 51(11), 849859; discussion 863–844. doi:10.1001/archpsyc.1994.03950110009002.CrossRefGoogle ScholarPubMed
Ohtani, T., Nestor, P. G., Bouix, S., Newell, D., Melonakos, E. D., McCarley, R. W., … Kubicki, M. (2017). Exploring the neural substrates of attentional control and human intelligence: Diffusion tensor imaging of prefrontal white matter tractography in healthy cognition. Neuroscience, 341, 5260. doi: 10.1016/j.neuroscience.2016.11.002.CrossRefGoogle ScholarPubMed
Prasad, K. M., Almasy, L., Gur, R. C., Gur, R. E., Pogue-Geile, M., Chowdari, K. V., … Nimgaonkar, V. L. (2010). RGS4 Polymorphisms associated with variability of cognitive performance in a family-based schizophrenia sample. Schizophrenia Bulletin, 36(5), 983990. doi: 10.1093/schbul/sbp002.CrossRefGoogle Scholar
Prasad, K. M., & Keshavan, M. S. (2008). Structural cerebral variations as useful endophenotypes in schizophrenia: Do they help construct “extended endophenotypes”? Schizophrenia Bulletin, 34(4), 774790. doi: 10.1093/schbul/sbn017.CrossRefGoogle ScholarPubMed
Prasad, K. M., Upton, C. H., Schirda, C. S., Nimgaonkar, V. L., & Keshavan, M. S. (2015). White matter diffusivity and microarchitecture among schizophrenia subjects and first-degree relatives. Schizophrenia Research, 161(1), 7075. doi: 10.1016/j.schres.2014.09.045.CrossRefGoogle ScholarPubMed
Roalf, D. R., Gur, R. C., Almasy, L., Richard, J., Gallagher, R. S., Prasad, K., … Gur, R. E. (2013). Neurocognitive performance stability in a multiplex multigenerational study of schizophrenia. Schizophrenia Bulletin, 39(5), 10081017. doi: 10.1093/schbul/sbs078.CrossRefGoogle Scholar
Roalf, D. R., Ruparel, K., Gur, R. E., Bilker, W., Gerraty, R., Elliott, M. A., … Gur, R. C. (2014). Neuroimaging predictors of cognitive performance across a standardized neurocognitive battery. Neuropsychology, 28(2), 161176. doi: 10.1037/neu0000011.CrossRefGoogle ScholarPubMed
Roalf, D. R., Ruparel, K., Verma, R., Elliott, M. A., Gur, R. E., & Gur, R. C. (2013). White matter organization and neurocognitive performance variability in schizophrenia. Schizophrenia Research, 143(1), 172178. doi: 10.1016/j.schres.2012.10.014.CrossRefGoogle Scholar
Roalf, D. R., Vandekar, S. N., Almasy, L., Ruparel, K., Satterthwaite, T. D., Elliott, M. A., … Gur, R. E. (2015). Heritability of subcortical and limbic brain volume and shape in multiplex-multigenerational families with schizophrenia. Biological Psychiatry, 77(2), 137146. doi: 10.1016/j.biopsych.2014.05.009.CrossRefGoogle ScholarPubMed
Schmahmann, J. D., & Pandya, D. N. (2007). Cerebral white matter--historical evolution of facts and notions concerning the organization of the fiber pathways of the brain. Journal of the History of the Neurosciences, 16(3), 237267. doi: 10.1080/09647040500495896.CrossRefGoogle ScholarPubMed
Shen, K. K., Dore, V., Rose, S., Fripp, J., McMahon, K. L., de Zubicaray, G. I., … Salvado, O. (2016). Heritability and genetic correlation between the cerebral cortex and associated white matter connections. Human Brain Mapping, 37(6), 23312347. doi: 10.1002/hbm.23177.CrossRefGoogle ScholarPubMed
Skudlarski, P., Schretlen, D. J., Thaker, G. K., Stevens, M. C., Keshavan, M. S., Sweeney, J. A., … Pearlson, G. D. (2013). Diffusion tensor imaging white matter endophenotypes in patients with schizophrenia or psychotic bipolar disorder and their relatives. American Journal of Psychiatry, 170(8), 886898. doi: 10.1176/appi.ajp.2013.12111448.CrossRefGoogle ScholarPubMed
Spalletta, G., Piras, F., Piras, F., Caltagirone, C., & Orfei, M. D. (2014). The structural neuroanatomy of metacognitive insight in schizophrenia and its psychopathological and neuropsychological correlates. Human Brain Mapping, 35(9), 47294740. doi: 10.1002/hbm.22507.CrossRefGoogle ScholarPubMed
Sullivan, P. F., Kendler, K. S., & Neale, M. C. (2003). Schizophrenia as a complex trait: Evidence from a meta-analysis of twin studies. Archives Of General Psychiatry, 60(12), 11871192. doi: 10.1001/archpsyc.60.12.1187, 60/12/1187 [pii].CrossRefGoogle ScholarPubMed
Tuulio-Henriksson, A., Haukka, J., Partonen, T., Varilo, T., Paunio, T., Ekelund, J., … Lonnqvist, J. (2002). Heritability and number of quantitative trait loci of neurocognitive functions in families with schizophrenia. American Journal of Medical Genetics Part B-Neuropsychiatric Genetics, 114(5), 483490. doi: 10.1002/ajmg.10480.CrossRefGoogle ScholarPubMed
van Haren, N. E., Rijsdijk, F., Schnack, H. G., Picchioni, M. M., Toulopoulou, T., Weisbrod, M., … Kahn, R. S. (2012). The genetic and environmental determinants of the association between brain abnormalities and schizophrenia: The schizophrenia twins and relatives consortium. Biological Psychiatry, 71(10), 915921. doi: 10.1016/j.biopsych.2012.01.010.CrossRefGoogle ScholarPubMed
Vitolo, E., Tatu, M. K., Pignolo, C., Cauda, F., Costa, T., Ando, A., & Zennaro, A. (2017). White matter and schizophrenia: A meta-analysis of voxel-based morphometry and diffusion tensor imaging studies. Psychiatry Research: Neuroimaging, 270, 821. doi: 10.1016/j.pscychresns.2017.09.014.CrossRefGoogle ScholarPubMed
Voineskos, A. N. (2015). Genetic underpinnings of white matter ‘connectivity’: Heritability, risk, and heterogeneity in schizophrenia. Schizophrenia Research, 161(1), 5060. doi: 10.1016/j.schres.2014.03.034.CrossRefGoogle Scholar
Yang, X., Cao, D., Liang, X., & Zhao, J. (2017). Schizophrenia symptomatic associations with diffusion tensor imaging measured fractional anisotropy of brain: A meta-analysis. Neuroradiology, 59(7), 699708. doi: 10.1007/s00234-017-1844-9.CrossRefGoogle ScholarPubMed
Yao, L., Lui, S., Liao, Y., Du, M. Y., Hu, N., Thomas, J. A., & Gong, Q. Y. (2013). White matter deficits in first episode schizophrenia: An activation likelihood estimation meta-analysis. Progress in Neuropsychopharmacology and Biological Psychiatry, 45, 100106. doi: 10.1016/j.pnpbp.2013.04.019.CrossRefGoogle ScholarPubMed
Supplementary material: File

Prasad et al. supplementary material

Prasad et al. supplementary material 1

Download Prasad et al. supplementary material(File)
File 18.3 KB
Supplementary material: File

Prasad et al. supplementary material

Prasad et al. supplementary material 2

Download Prasad et al. supplementary material(File)
File 15.6 KB