Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-27T15:04:12.718Z Has data issue: false hasContentIssue false

Functional neuroimaging of resilience to trauma: convergent evidence and challenges for future research

Published online by Cambridge University Press:  02 June 2023

Agnes Norbury
Affiliation:
Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA Queen Square Institute of Neurology and Mental Health Neuroscience Department, Applied Computational Psychiatry Lab, Max Planck Centre for Computational Psychiatry and Ageing Research, University College London, London, UK
Saren H. Seeley
Affiliation:
Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
M. Mercedes Perez-Rodriguez
Affiliation:
Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
Adriana Feder*
Affiliation:
Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
*
Corresponding author: Adriana Feder; Email: [email protected]

Abstract

Resilience is broadly defined as the ability to adapt successfully following stressful life events. Here, we review functional MRI studies that investigated key psychological factors that have been consistently linked to resilience to severe adversity and trauma exposure. These domains include emotion regulation (including cognitive reappraisal), reward responsivity, and cognitive control. Further, we briefly review functional imaging evidence related to emerging areas of study that may potentially facilitate resilience: namely social cognition, active coping, and successful fear extinction. Finally, we also touch upon ongoing issues in neuroimaging study design that will need to be addressed to enable us to harness insight from such studies to improve treatments for – or, ideally, guard against the development of – debilitating post-traumatic stress syndromes.

Type
Review Article
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Shared first authorship; These authors contributed equally to this work.

References

Abe, R., Okada, S., Nakayama, R., Ikegaya, Y., & Sasaki, T. (2019). Social defeat stress causes selective attenuation of neuronal activity in the ventromedial prefrontal cortex. Scientific Reports, 9(1), 9447. https://doi.org/10.1038/s41598-019-45833-5.CrossRefGoogle ScholarPubMed
Admon, R., Lubin, G., Rosenblatt, J. D., Stern, O., Kahn, I., Assaf, M., & Hendler, T. (2013). Imbalanced neural responsivity to risk and reward indicates stress vulnerability in humans. Cerebral Cortex, 23(1), 2835. https://doi.org/10.1093/cercor/bhr369.CrossRefGoogle ScholarPubMed
Admon, R., Lubin, G., Stern, O., Rosenberg, K., Sela, L., Ben-Ami, H., & Hendler, T. (2009). Human vulnerability to stress depends on amygdala's predisposition and hippocampal plasticity. Proceedings of the National Academy of Sciences of the United States of America, 106(33), 1412014125. https://doi.org/10.1073/pnas.0903183106.CrossRefGoogle ScholarPubMed
Akdeniz, C., Tost, H., Streit, F., Haddad, L., Wüst, S., Schäfer, A., … Meyer-Lindenberg, A. (2014). Neuroimaging evidence for a role of neural social stress processing in ethnic minority–associated environmental risk. JAMA Psychiatry, 71(6), 672680. https://doi.org/10.1001/jamapsychiatry.2014.35.CrossRefGoogle ScholarPubMed
American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders (5th ed.). Washington, DC and London, England: American Psychiatric Association. https://doi.org/10.1176/appi.books.9780890425596.Google Scholar
Amstadter, A. B., Maes, H. H., Sheerin, C. M., Myers, J. M., & Kendler, K. S. (2016). The relationship between genetic and environmental influences on resilience and on common internalizing and externalizing psychiatric disorders. Social Psychiatry and Psychiatric Epidemiology, 51(5), 669678. https://doi.org/10.1007/s00127-015-1163-6.CrossRefGoogle ScholarPubMed
Amstadter, A. B., Myers, J. M., & Kendler, K. S. (2014). Psychiatric resilience: Longitudinal twin study. The British Journal of Psychiatry: The Journal of Mental Science, 205(4), 275280. https://doi.org/10.1192/bjp.bp.113.130906.CrossRefGoogle ScholarPubMed
Anacker, C., & Hen, R. (2017). Adult hippocampal neurogenesis and cognitive flexibility—linking memory and mood. Nature Reviews Neuroscience, 18(6), 335346. https://doi.org/10.1038/nrn.2017.45.CrossRefGoogle ScholarPubMed
Aupperle, R. L., Melrose, A. J., Stein, M. B., & Paulus, M. P. (2012). Executive function and PTSD: Disengaging from trauma. Neuropharmacology, 62(2), 686694. https://doi.org/10.1016/j.neuropharm.2011.02.008.CrossRefGoogle ScholarPubMed
Baldwin, J. R., Reuben, A., Newbury, J. B., & Danese, A. (2019). Agreement between prospective and retrospective measures of childhood maltreatment: A systematic review and meta-analysis. JAMA Psychiatry, 76(6), 584. https://doi.org/10.1001/jamapsychiatry.2019.0097.CrossRefGoogle ScholarPubMed
Ben-Zion, Z., Fine, N. B., Keynan, N. J., Admon, R., Green, N., Halevi, M., … Shalev, A. Y. (2018). Cognitive flexibility predicts PTSD symptoms: Observational and interventional studies. Frontiers in Psychiatry, 9, 477. https://doi.org/10.3389/fpsyt.2018.00477.CrossRefGoogle ScholarPubMed
Ben-Zion, Z., Spiller, T. R., Keynan, J. N., Admon, R., Levy, I., Liberzon, I., … Harpaz-Rotem, I. (2023). Evaluating the evidence for brain-based biotypes of psychiatric vulnerability in the acute aftermath of trauma. American Journal of Psychiatry, 180(2), 101145. https://doi.org/10.1176/appi.ajp.20220271.CrossRefGoogle ScholarPubMed
Bernstein, D. P., Fink, L., Handelsman, L., Foote, J., Lovejoy, M., Wenzel, K., … Ruggiero, J. (1994). Initial reliability and validity of a new retrospective measure of child abuse and neglect. The American Journal of Psychiatry, 151(8), 11321136. https://doi.org/10.1176/ajp.151.8.1132.Google ScholarPubMed
Biglan, A., Flay, B. R., Embry, D. D., & Sandler, I. N. (2012). The critical role of nurturing environments for promoting human wellbeing. The American Psychologist, 67(4), 257271. https://doi.org/10.1037/a0026796.CrossRefGoogle Scholar
Bird, C. M., Webb, E. K., Schramm, A. T., Torres, L., Larson, C., & deRoon-Cassini, T. A. (2021). Racial discrimination is associated with acute posttraumatic stress symptoms and predicts future posttraumatic stress disorder symptom severity in trauma-exposed black adults in the United States. Journal of Traumatic Stress, 34(5), 9951004. https://doi.org/10.1002/jts.22670.CrossRefGoogle ScholarPubMed
Bistricky, S. L., Long, L. J., Lai, B. S., Gallagher, M. W., Kanenberg, H., Elkins, S. R., … Short, M. B. (2019). Surviving the storm: Avoidant coping, helping behavior, resilience and affective symptoms around a major hurricane-flood. Journal of Affective Disorders, 257, 297306. https://doi.org/10.1016/j.jad.2019.07.044.CrossRefGoogle Scholar
Blair, K. S., Vythilingam, M., Crowe, S. L., McCaffrey, D. E., Ng, P., Wu, C. C., … Blair, R. J. R. (2013). Cognitive control of attention is differentially affected in trauma-exposed individuals with and without post-traumatic stress disorder. Psychological Medicine, 43(1), 8595. https://doi.org/10.1017/S0033291712000840.CrossRefGoogle ScholarPubMed
Bogdan, R., Salmeron, B. J., Carey, C. E., Agrawal, A., Calhoun, V. D., Garavan, H., … Goldman, D. (2017). Imaging genetics and genomics in psychiatry: A critical review of progress and potential. Biological Psychiatry, 82(3), 165175. https://doi.org/10.1016/j.biopsych.2016.12.030.CrossRefGoogle ScholarPubMed
Bourdon, D.-É., El-Baalbaki, G., Girard, D., Lapointe-Blackburn, É., & Guay, S. (2019). Schemas and coping strategies in cognitive-behavioral therapy for PTSD: A systematic review. European Journal of Trauma & Dissociation, 3(1), 3347. https://doi.org/10.1016/j.ejtd.2018.09.005.CrossRefGoogle Scholar
Brody, G. H., Yu, T., Nusslock, R., Barton, A. W., Miller, G. E., Chen, E., … Sweet, L. H. (2019). The protective effects of supportive parenting on the relationship between adolescent poverty and resting-state functional brain connectivity during adulthood. Psychological Science, 30(7), 10401049. https://doi.org/10.1177/0956797619847989.CrossRefGoogle ScholarPubMed
Bromet, E. J., Karam, E. G., Koenen, K. C., & Stein, D. J. (2018). Trauma and posttraumatic stress disorder: Global perspectives from the WHO world mental health surveys. Cambridge, United Kingdom; New York, NY: Cambridge University Press.CrossRefGoogle Scholar
Brondolo, E. (2015). Racial and ethnic disparities in health: Examining the contexts that shape resilience and risk. Psychosomatic Medicine, 77(1), 25. https://doi.org/10.1097/PSY.0000000000000149.CrossRefGoogle ScholarPubMed
Burt, K. B., Whelan, R., Conrod, P. J., Banaschewski, T., Barker, G. J., Bokde, A. L., … Garavan, H. (2016). Structural brain correlates of adolescent resilience. Journal of Child Psychology and Psychiatry, and Allied Disciplines, 57(11), 12871296. https://doi.org/10.1111/jcpp.12552.CrossRefGoogle ScholarPubMed
Callaghan, B. L., Gee, D. G., Gabard-Durnam, L., Telzer, E. H., Humphreys, K. L., Goff, B., … Tottenham, N. (2019). Decreased amygdala reactivity to parent cues protects against anxiety following early adversity: An examination across 3 years. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 4(7), 664671. https://doi.org/10.1016/j.bpsc.2019.02.001.Google ScholarPubMed
Careaga, M. B. L., Girardi, C. E. N., & Suchecki, D. (2016). Understanding posttraumatic stress disorder through fear conditioning, extinction and reconsolidation. Neuroscience and Biobehavioral Reviews, 71, 4857. https://doi.org/10.1016/j.neubiorev.2016.08.023.CrossRefGoogle ScholarPubMed
Carter, R. T. (2007). Racism and psychological and emotional injury: Recognizing and assessing race-based traumatic stress. The Counseling Psychologist, 35(1), 13105. https://doi.org/10.1177/0011000006292033.CrossRefGoogle Scholar
Chen, F., Ke, J., Qi, R., Xu, Q., Zhong, Y., Liu, T., … Lu, G. (2018 a). Increased inhibition of the amygdala by the mPFC may reflect a resilience factor in post-traumatic stress disorder: A resting-state fMRI granger causality analysis. Frontiers in Psychiatry, 9, 516. https://doi.org/10.3389/fpsyt.2018.00516.CrossRefGoogle ScholarPubMed
Cicchetti, D., & Rogosch, F. A. (2012). Gene × environment interaction and resilience: Effects of child maltreatment and serotonin, corticotropin releasing hormone, dopamine, and oxytocin genes. Development and Psychopathology, 24(2), 411427. https://doi.org/10.1017/S0954579412000077.CrossRefGoogle ScholarPubMed
Cisler, J. M., Sigel, B. A., Steele, J. S., Smitherman, S., Vanderzee, K., Pemberton, J., … Kilts, C. D. (2016). Changes in functional connectivity of the amygdala during cognitive reappraisal predict symptom reduction during trauma-focused cognitive–behavioral therapy among adolescent girls with post-traumatic stress disorder. Psychological Medicine, 46(14), 30133023. https://doi.org/10.1017/S0033291716001847.CrossRefGoogle ScholarPubMed
Clark, U. S., Miller, E. R., & Hegde, R. R. (2018). Experiences of discrimination are associated with greater resting amygdala activity and functional connectivity. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 3(4), 367378. https://doi.org/10.1016/j.bpsc.2017.11.011.Google ScholarPubMed
Connor, K. M., & Davidson, J. R. T. (2003 a). Development of a new resilience scale: The Connor-Davidson resilience scale (CD-RISC). Depression and Anxiety, 18(2), 7682. https://doi.org/10.1002/da.10113.CrossRefGoogle ScholarPubMed
Corral-Frías, N. S., Nikolova, Y. S., Michalski, L. J., Baranger, D. A. A., Hariri, A. R., & Bogdan, R. (2015). Stress-related anhedonia is associated with ventral striatum reactivity to reward and transdiagnostic psychiatric symptomatology. Psychological Medicine, 45(12), 26052617. https://doi.org/10.1017/S0033291715000525.CrossRefGoogle ScholarPubMed
Cox, R. W., Chen, G., Glen, D. R., Reynolds, R. C., & Taylor, P. A. (2017). FMRI Clustering in AFNI: False-positive rates redux. Brain Connectivity, 7(3), 152171. https://doi.org/10.1089/brain.2016.0475.CrossRefGoogle ScholarPubMed
Daniels, J. K., Hegadoren, K. M., Coupland, N. J., Rowe, B. H., Densmore, M., Neufeld, R. W. J., & Lanius, R. A. (2012). Neural correlates and predictive power of trait resilience in an acutely traumatized sample: A pilot investigation. The Journal of Clinical Psychiatry, 73(3), 327332. https://doi.org/10.4088/JCP.10m06293.CrossRefGoogle Scholar
Demers, L. A., Hunt, R. H., Cicchetti, D., Cohen-Gilbert, J. E., Rogosch, F. A., Toth, S. L., … Thomas, K. M. (2021). Impact of childhood maltreatment and resilience on behavioral and neural patterns of inhibitory control during emotional distraction. Development and Psychopathology, 34(4), 12601271. https://doi.org/10.1017/S0954579421000055.CrossRefGoogle ScholarPubMed
Demers, L. A., McKenzie, K. J., Hunt, R. H., Cicchetti, D., Cowell, R. A., Rogosch, F. A., … Thomas, K. M. (2018). Separable effects of childhood maltreatment and adult adaptive functioning on amygdala connectivity during emotion processing. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 3(2), 116124. https://doi.org/10.1016/j.bpsc.2017.08.010.Google ScholarPubMed
Denckla, C. A., Cicchetti, D., Kubzansky, L. D., Seedat, S., Teicher, M. H., Williams, D. R., & Koenen, K. C. (2020). Psychological resilience: An update on definitions, a critical appraisal, and research recommendations. European Journal of Psychotraumatology, 11(1), 1822064. https://doi.org/10.1080/20008198.2020.1822064.CrossRefGoogle ScholarPubMed
Dennison, M. J., Sheridan, M. A., Busso, D. S., Jenness, J. L., Peverill, M., Rosen, M. L., & McLaughlin, K. A. (2016). Neurobehavioral markers of resilience to depression amongst adolescents exposed to child abuse. Journal of Abnormal Psychology, 125(8), 12011212. https://doi.org/10.1037/abn0000215.CrossRefGoogle ScholarPubMed
Dillon, D. G., Holmes, A. J., Birk, J. L., Brooks, N., Lyons-Ruth, K., & Pizzagalli, D. A. (2009). Childhood adversity Is associated with left basal ganglia dysfunction during reward anticipation in adulthood. Biological Psychiatry, 66(3), 206213. https://doi.org/10.1016/j.biopsych.2009.02.019.CrossRefGoogle ScholarPubMed
Dima, D., & Breen, G. (2015). Polygenic risk scores in imaging genetics: Usefulness and applications. Journal of Psychopharmacology, 29(8), 867871. https://doi.org/10.1177/0269881115584470.CrossRefGoogle ScholarPubMed
Dubois, J., & Adolphs, R. (2016). Building a science of individual differences from fMRI. Trends in Cognitive Sciences, 20(6), 425443. https://doi.org/10.1016/j.tics.2016.03.014.CrossRefGoogle ScholarPubMed
Dunn, E. C., Soare, T. W., Zhu, Y., Simpkin, A. J., Suderman, M. J., Klengel, T., … Relton, C. L. (2019). Sensitive periods for the effect of childhood adversity on DNA methylation: Results from a prospective, longitudinal study. Biological Psychiatry, 85(10), 838849. https://doi.org/10.1016/j.biopsych.2018.12.023.CrossRefGoogle ScholarPubMed
Dunsmoor, J. E., Kroes, M. C. W., Li, J., Daw, N. D., Simpson, H. B., & Phelps, E. A. (2019). Role of human ventromedial prefrontal cortex in learning and recall of enhanced extinction. Journal of Neuroscience, 39(17), 32643276. https://doi.org/10.1523/JNEUROSCI.2713-18.2019.CrossRefGoogle ScholarPubMed
Eklund, A., Nichols, T. E., & Knutsson, H. (2016). Cluster failure: Why fMRI inferences for spatial extent have inflated false-positive rates. Proceedings of the National Academy of Sciences, 113(28), 79007905. https://doi.org/10.1073/pnas.1602413113CrossRefGoogle ScholarPubMed
Elliott, M. L., Knodt, A. R., Cooke, M., Kim, M. J., Melzer, T. R., Keenan, R., … Hariri, A. R. (2019). General functional connectivity: Shared features of resting-state and task fMRI drive reliable and heritable individual differences in functional brain networks. NeuroImage, 189, 516532. https://doi.org/10.1016/j.neuroimage.2019.01.068.CrossRefGoogle ScholarPubMed
Elliott, M. L., Knodt, A. R., Ireland, D., Morris, M. L., Poulton, R., Ramrakha, S., … Hariri, A. R. (2020). What is the test-retest reliability of common task-functional MRI measures? New empirical evidence and a meta-analysis. Psychological Science, 31(7), 792806. https://doi.org/10.1177/0956797620916786.CrossRefGoogle ScholarPubMed
Elman, I., Lowen, S., Frederick, B. B., Chi, W., Becerra, L., & Pitman, R. K. (2009). Functional neuroimaging of reward circuitry responsivity to monetary gains and losses in posttraumatic stress disorder. Biological Psychiatry, 66(12), 10831090. https://doi.org/10.1016/j.biopsych.2009.06.006.CrossRefGoogle ScholarPubMed
Ersche, K. D. (2020). Resilience to trauma: Just a matter of control? Science (New York, N.Y.), 367(6479), 734735. https://doi.org/10.1126/science.aaz9451.CrossRefGoogle ScholarPubMed
Falconer, E., Bryant, R., Felmingham, K. L., Kemp, A. H., Gordon, E., Peduto, A., … Williams, L. M. (2008). The neural networks of inhibitory control in posttraumatic stress disorder. Journal of Psychiatry & Neuroscience: JPN, 33(5), 413422.Google ScholarPubMed
Feder, A., Fred-Torres, S., Southwick, S. M., & Charney, D. S. (2019). The biology of human resilience: Opportunities for enhancing resilience across the life span. Biological Psychiatry, 86(6), 443453. https://doi.org/10.1016/j.biopsych.2019.07.012.CrossRefGoogle ScholarPubMed
Feder, A., Mota, N., Salim, R., Rodriguez, J., Singh, R., Schaffer, J., … Pietrzak, R. H. (2016). Risk, coping and PTSD symptom trajectories in World Trade Center responders. Journal of Psychiatric Research, 82, 6879. https://doi.org/10.1016/j.jpsychires.2016.07.003.CrossRefGoogle ScholarPubMed
Felmingham, K. L., Falconer, E. M., Williams, L., Kemp, A. H., Allen, A., Peduto, A., & Bryant, R. A. (2014). Reduced amygdala and ventral striatal activity to happy faces in PTSD Is associated with emotional numbing. PLoS One, 9(9), e103653. https://doi.org/10.1371/journal.pone.0103653.CrossRefGoogle ScholarPubMed
Finn, E. S., Glerean, E., Khojandi, A. Y., Nielson, D., Molfese, P. J., Handwerker, D. A., & Bandettini, P. A. (2020). Idiosynchrony: From shared responses to individual differences during naturalistic neuroimaging. NeuroImage, 215, 116828. https://doi.org/10.1016/j.neuroimage.2020.116828.CrossRefGoogle ScholarPubMed
Fitzgerald, J. M., Webb, E. K., Weis, C. N., Huggins, A. A., Bennett, K. P., Miskovich, T. A., … Larson, C. L. (2022). Hippocampal resting-state functional connectivity forecasts individual posttraumatic stress disorder symptoms: A data-driven approach. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 7(2), 139149. https://doi.org/10.1016/j.bpsc.2021.08.007.Google ScholarPubMed
Fonzo, G. A., Goodkind, M. S., Oathes, D. J., Zaiko, Y. V., Harvey, M., Peng, K. K., … Etkin, A. (2017). PTSD Psychotherapy outcome predicted by brain activation during emotional reactivity and regulation. American Journal of Psychiatry, 174(12), 11631174. https://doi.org/10.1176/appi.ajp.2017.16091072.CrossRefGoogle ScholarPubMed
Fonzo, G. A., Simmons, A. N., Thorp, S. R., Norman, S. B., Paulus, M. P., & Stein, M. B. (2010). Exaggerated and disconnected insular-amygdalar blood oxygenation level-dependent response to threat-related emotional faces in women with intimate-partner violence posttraumatic stress disorder. Biological Psychiatry, 68(5), 433441. https://doi.org/10.1016/j.biopsych.2010.04.028.CrossRefGoogle ScholarPubMed
Fritz, J., de Graaff, A. M., Caisley, H., van Harmelen, A.-L., & Wilkinson, P. O. (2018 a). A systematic review of amenable resilience factors that moderate and/or mediate the relationship between childhood adversity and mental health in young people. Frontiers in Psychiatry, 9(230), 117. https://doi.org/10.3389/fpsyt.2018.00230.CrossRefGoogle ScholarPubMed
Fritz, J., Fried, E. I., Goodyer, I. M., Wilkinson, P. O., & van Harmelen, A.-L. (2018 b). A network model of resilience factors for adolescents with and without exposure to childhood adversity. Scientific Reports, 8(15774), 113. https://doi.org/10.1038/s41598-018-34130-2.CrossRefGoogle ScholarPubMed
Fritz, J., Stretton, J., Askelund, A. D., Schweizer, S., Walsh, N. D., Elzinga, B. M., … van Harmelen, A.-L. (2019). Mood and neural responses to social rejection do not seem to be altered in resilient adolescents with a history of adversity. Development and Psychopathology, 32(2), 411423. https://doi.org/10.1017/S0954579419000178.CrossRefGoogle Scholar
Fullana, M. A., Albajes-Eizagirre, A., Soriano-Mas, C., Vervliet, B., Cardoner, N., Benet, O., … Harrison, B. J. (2018). Fear extinction in the human brain: A meta-analysis of fMRI studies in healthy participants. Neuroscience & Biobehavioral Reviews, 88, 1625. https://doi.org/10.1016/j.neubiorev.2018.03.002.CrossRefGoogle Scholar
Fullana, M. A., Dunsmoor, J. E., Schruers, K. R. J., Savage, H. S., Bach, D. R., & Harrison, B. J. (2020). Human fear conditioning: From neuroscience to the clinic. Behaviour Research and Therapy, 124, 103528. https://doi.org/10.1016/j.brat.2019.103528.CrossRefGoogle ScholarPubMed
Gee, D. G. (2020). Caregiving influences on emotional learning and regulation: Applying a sensitive period model. Current Opinion in Behavioral Sciences, 36, 177184. https://doi.org/10.1016/j.cobeha.2020.11.003.CrossRefGoogle ScholarPubMed
Gerin, M. I., Viding, E., Pingault, J.-B., Puetz, V. B., Knodt, A. R., Radtke, S. R., … McCrory, E. J. (2019). Heightened amygdala reactivity and increased stress generation predict internalizing symptoms in adults following childhood maltreatment. Journal of Child Psychology and Psychiatry, 60(7), 752761. https://doi.org/10.1111/jcpp.13041.CrossRefGoogle ScholarPubMed
Getnet, B., Medhin, G., & Alem, A. (2019). Symptoms of post-traumatic stress disorder and depression among Eritrean refugees in Ethiopia: Identifying direct, meditating and moderating predictors from path analysis. BMJ Open, 9(1), e021142. https://doi.org/10.1136/bmjopen-2017-021142.CrossRefGoogle ScholarPubMed
Goodyer, I. M., Croudace, T., Dunn, V., Herbert, J., & Jones, P. B. (2010). Cohort profile: Risk patterns and processes for psychopathology emerging during adolescence: The ROOTS project. International Journal of Epidemiology, 39(2), 361369. https://doi.org/10.1093/ije/dyp173.CrossRefGoogle ScholarPubMed
Gould, F., Clarke, J., Heim, C., Harvey, P. D., Majer, M., & Nemeroff, C. B. (2012). The effects of child abuse and neglect on cognitive functioning in adulthood. Journal of Psychiatric Research, 46(4), 500506. Scopus. https://doi.org/10.1016/j.jpsychires.2012.01.005.CrossRefGoogle ScholarPubMed
Green, B. L. (1990). Defining trauma: Terminology and generic stressor dimensions. Journal of Applied Social Psychology, 20(20), 16321642. https://doi.org/10.1111/j.1559-1816.1990.tb01498.x.CrossRefGoogle Scholar
Greenberg, M. T. (2006). Promoting resilience in children and youth. Annals of the New York Academy of Sciences, 1094(1), 139150. https://doi.org/10.1196/annals.1376.013.CrossRefGoogle ScholarPubMed
Hanson, J. L., Albert, D., Iselin, A.-M. R., Carré, J. M., Dodge, K. A., & Hariri, A. R. (2016). Cumulative stress in childhood is associated with blunted reward-related brain activity in adulthood. Social Cognitive and Affective Neuroscience, 11(3), 405412. https://doi.org/10.1093/scan/nsv124.CrossRefGoogle ScholarPubMed
Hanson, J. L., Hariri, A. R., & Williamson, D. E. (2015). Blunted ventral striatum development in adolescence reflects emotional neglect and predicts depressive symptoms. Biological Psychiatry, 78(9), 598605. https://doi.org/10.1016/j.biopsych.2015.05.010.CrossRefGoogle ScholarPubMed
Harpur, L. J., Polek, E., & van Harmelen, A.-L. (2015). The role of timing of maltreatment and child intelligence in pathways to low symptoms of depression and anxiety in adolescence. Child Abuse & Neglect, 47, 2437. https://doi.org/10.1016/j.chiabu.2015.05.019.CrossRefGoogle ScholarPubMed
Hofmann, S. G., Asmundson, G. J. G., & Beck, A. T. (2013). The science of cognitive therapy. Behavior Therapy, 44(2), 199212. https://doi.org/10.1016/j.beth.2009.01.007.CrossRefGoogle ScholarPubMed
Holz, N. E., Tost, H., & Meyer-Lindenberg, A. (2020). Resilience and the brain: A key role for regulatory circuits linked to social stress and support. Molecular Psychiatry, 25(2), 379396. https://doi.org/10.1038/s41380-019-0551-9.CrossRefGoogle Scholar
Hoorelbeke, K., Van den Bergh, N., Wichers, M., & Koster, E. H. W. (2019). Between vulnerability and resilience: A network analysis of fluctuations in cognitive risk and protective factors following remission from depression. Behaviour Research and Therapy, 116, 19. https://doi.org/10.1016/j.brat.2019.01.007.CrossRefGoogle ScholarPubMed
Horn, S. R., Pietrzak, R. H., Schechter, C., Bromet, E. J., Katz, C. L., Reissman, D. B., … Feder, A. (2016). Latent typologies of posttraumatic stress disorder in World Trade Center responders. Journal of Psychiatric Research, 83, 151159. https://doi.org/10.1016/j.jpsychires.2016.08.018.CrossRefGoogle ScholarPubMed
Hudson, A., Van Hamme, C., Maeyens, L., Brass, M., & Mueller, S. (2018). Spontaneous mentalizing after early interpersonal trauma: Evidence for hypoactivation of the temporoparietal junction [preprint]. bioRxiv, 132. https://doi.org/10.1101/487363.Google Scholar
Iadipaolo, A. S., Marusak, H. A., Paulisin, S. M., Sala-Hamrick, K., Crespo, L. M., Elrahal, F., … Rabinak, C. A. (2018). Distinct neural correlates of trait resilience within core neurocognitive networks in at-risk children and adolescents. NeuroImage. Clinical, 20, 2434. https://doi.org/10.1016/j.nicl.2018.06.026.CrossRefGoogle ScholarPubMed
Iigaya, K., Hauser, T. U., Kurth-Nelson, Z., O'Doherty, J. P., Dayan, P., & Dolan, R. J. (2020). The value of what’s to come: Neural mechanisms coupling prediction error and the utility of anticipation. Science Advances, 6, 116. https://doi.org/10.1126/sciadv.aba3828.CrossRefGoogle ScholarPubMed
Ioannidis, K., Askelund, A. D., Kievit, R. A., & van Harmelen, A.-L. (2020). The complex neurobiology of resilient functioning after childhood maltreatment. BMC Medicine, 18(1), 32. https://doi.org/10.1186/s12916-020-1490-7.CrossRefGoogle ScholarPubMed
Jacob, S. N., Dodge, C. P., & Vasterling, J. J. (2019). Posttraumatic stress disorder and neurocognition: A bidirectional relationship? Clinical Psychology Review, 72, 101747. https://doi.org/10.1016/j.cpr.2019.101747.CrossRefGoogle ScholarPubMed
Jeong, H., Park, S., Dager, S. R., Lim, S. M., Lee, S. L., Hong, H., … Lyoo, I. K. (2019). Altered functional connectivity in the fear network of firefighters with repeated traumatic stress. The British Journal of Psychiatry, 214(6), 347353. https://doi.org/10.1192/bjp.2018.260.CrossRefGoogle ScholarPubMed
Kaldewaij, R., Koch, S. B. J., Hashemi, M. M., Zhang, W., Klumpers, F., & Roelofs, K. (2021). Anterior prefrontal brain activity during emotion control predicts resilience to post-traumatic stress symptoms. Nature Human Behaviour, 5, 10551064. https://doi.org/10.1038/s41562-021-01055-2.CrossRefGoogle ScholarPubMed
Kalisch, R., Baker, D. G., Basten, U., Boks, M. P., Bonanno, G. A., Brummelman, E., … Kleim, B. (2017). The resilience framework as a strategy to combat stress-related disorders. Nature Human Behaviour, 1(11), 784. https://doi.org/10.1038/s41562-017-0200-8.CrossRefGoogle ScholarPubMed
Karam, E. G., Friedman, M. J., Hill, E. D., Kessler, R. C., McLaughlin, K. A., Petukhova, M., … Koenen, K. C. (2014). Cumulative traumas and risk thresholds: 12-month PTSD in the world mental health (WMH) surveys. Depression and Anxiety, 31(2), 130142. https://doi.org/10.1002/da.22169.CrossRefGoogle ScholarPubMed
Keane, T. M., Fairbank, J. A., Caddell, J. M., Zimering, R. T., Taylor, K. L., & Mora, C. A. (1989). Clinical evaluation of a measure to assess combat exposure. Psychological Assessment: A Journal of Consulting and Clinical Psychology, 1(1), 5355. https://doi.org/10.1037/1040-3590.1.1.53.CrossRefGoogle Scholar
Keynan, J. N., Cohen, A., Jackont, G., Green, N., Goldway, N., Davidov, A., … Hendler, T. (2019). Electrical fingerprint of the amygdala guides neurofeedback training for stress resilience. Nature Human Behaviour, 3(1), 63. https://doi.org/10.1038/s41562-018-0484-3.CrossRefGoogle ScholarPubMed
Lepore, S. J., & Kliewer, W. (2019). Social intelligence attenuates association between peer victimization and depressive symptoms among adolescents. Psychology of Violence, 9(6), 644652. https://doi.org/10.1037/vio0000234.CrossRefGoogle ScholarPubMed
Liebenberg, L. (2020). Reconsidering interactive resilience processes in mental health: Implications for child and youth services. Journal of Community Psychology, 48(5), 13651380. https://doi.org/10.1002/jcop.22331.CrossRefGoogle ScholarPubMed
Lissek, S., & van Meurs, B. (2015). Learning models of PTSD: Theoretical accounts and psychobiological evidence. International Journal of Psychophysiology, 98(3, Part 2), 594605. https://doi.org/10.1016/j.ijpsycho.2014.11.006.CrossRefGoogle ScholarPubMed
Luthar, S. S., Sawyer, J. A., & Brown, P. J. (2006). Conceptual issues in studies of resilience. Annals of the New York Academy of Sciences, 1094(1), 105115. https://doi.org/10.1196/annals.1376.009.CrossRefGoogle ScholarPubMed
Maier, S. F., & Watkins, L. R. (2010). Role of the medial prefrontal cortex in coping and resilience. Brain Research, 1355, 5260. https://doi.org/10.1016/j.brainres.2010.08.039.CrossRefGoogle ScholarPubMed
Mary, A., Dayan, J., Leone, G., Postel, C., Fraisse, F., Malle, C., … Gagnepain, P. (2020). Resilience after trauma: The role of memory suppression. Science, 367(6479), 113. https://doi.org/10.1126/science.aay8477CrossRefGoogle ScholarPubMed
McGloin, J. M., & Widom, C. S. (2001). Resilience among abused and neglected children grown up. Development and Psychopathology, 13(4), 10211038.CrossRefGoogle ScholarPubMed
McLean, C. P., & Anderson, E. R. (2009). Brave men and timid women? A review of the gender differences in fear and anxiety. Clinical Psychology Review, 29(6), 496505. https://doi.org/10.1016/j.cpr.2009.05.003.CrossRefGoogle ScholarPubMed
McLean, S. A., Ressler, K., Koenen, K. C., Neylan, T., Germine, L., Jovanovic, T., … Kessler, R. (2020). The AURORA study: A longitudinal, multimodal library of brain biology and function after traumatic stress exposure. Molecular Psychiatry, 25(2), 283296. https://doi.org/10.1038/s41380-019-0581-3.CrossRefGoogle ScholarPubMed
Meili, I., & Maercker, A. (2019). Cultural perspectives on positive responses to extreme adversity: A playing field for metaphors. Transcultural Psychiatry, 56(5), 10561075. https://doi.org/10.1177/1363461519844355.CrossRefGoogle ScholarPubMed
Mendenhall, E., & Kim, A. W. (2019). How to fail a scale: Reflections on a failed attempt to assess resilience. Culture, Medicine, and Psychiatry, 43(2), 315325. https://doi.org/10.1007/s11013-018-9617-4.CrossRefGoogle ScholarPubMed
Méndez Leal, A. S., & Silvers, J. A. (2021). Neurobiological markers of resilience to early-life adversity during adolescence. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 6(2), 238247. https://doi.org/10.1016/j.bpsc.2020.08.004.Google ScholarPubMed
Milad, M. R., Wright, C. I., Orr, S. P., Pitman, R. K., Quirk, G. J., & Rauch, S. L. (2007). Recall of fear extinction in humans activates the ventromedial prefrontal cortex and hippocampus in concert. Biological Psychiatry, 62(5), 446454. https://doi.org/10.1016/j.biopsych.2006.10.011.CrossRefGoogle ScholarPubMed
Moreno-López, L., Ioannidis, K., Askelund, A. D., Smith, A. J., Schueler, K., & van Harmelen, A.-L. (2020). The resilient emotional brain: A scoping review of the medial prefrontal cortex and limbic structure and function in resilient adults With a history of childhood maltreatment. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 5(4), 392402. https://doi.org/10.1016/j.bpsc.2019.12.008.Google Scholar
Mowinckel, A. M., & Vidal-Piñeiro, D. (2019, December 17). Visualisation of Brain Statistics with R-packages ggseg and ggseg3d. arXiv. https://doi.org/10.48550/arXiv.1912.08200.CrossRefGoogle Scholar
Mowinckel, A. M., & Vidal-Piñeiro, D. (n.d.). GgsegExtra [R]. Retrieved from https://github.com/ggseg/ggsegExtra (Original work published 2019).Google Scholar
Nawijn, L., van Zuiden, M., Frijling, J. L., Koch, S. B. J., Veltman, D. J., & Olff, M. (2015). Reward functioning in PTSD: A systematic review exploring the mechanisms underlying anhedonia. Neuroscience & Biobehavioral Reviews, 51, 189204. https://doi.org/10.1016/j.neubiorev.2015.01.019.CrossRefGoogle ScholarPubMed
Nord, C. L., Gray, A., Charpentier, C. J., Robinson, O. J., & Roiser, J. P. (2017). Unreliability of putative fMRI biomarkers during emotional face processing. NeuroImage, 156, 119127. https://doi.org/10.1016/j.neuroimage.2017.05.024.CrossRefGoogle ScholarPubMed
Patel, R., Spreng, R. N., Shin, L. M., & Girard, T. A. (2012). Neurocircuitry models of posttraumatic stress disorder and beyond: A meta-analysis of functional neuroimaging studies. Neuroscience & Biobehavioral Reviews, 36(9), 21302142. https://doi.org/10.1016/j.neubiorev.2012.06.003.CrossRefGoogle ScholarPubMed
Pietrzak, R. H., el-Gabalawy, R., Tsai, J., Sareen, J., Neumeister, A., & Southwick, S. M. (2014 a). Typologies of posttraumatic stress disorder in the U.S. adult population. Journal of Affective Disorders, 162, 102106. https://doi.org/10.1016/j.jad.2014.03.024.CrossRefGoogle ScholarPubMed
Pietrzak, R. H., Feder, A., Singh, R., Schechter, C. B., Bromet, E. J., Katz, C. L., … Southwick, S. M. (2014 b). Trajectories of PTSD risk and resilience in World Trade Center responders: An 8-year prospective cohort study. Psychological Medicine, 44(1), 205219. https://doi.org/10.1017/S0033291713000597.CrossRefGoogle ScholarPubMed
Pitman, R. K., Rasmusson, A. M., Koenen, K. C., Shin, L. M., Orr, S. P., Gilbertson, M. W., … Liberzon, I. (2012). Biological studies of post-traumatic stress disorder. Nature Reviews Neuroscience, 13(11), 769787. https://doi.org/10.1038/nrn3339.CrossRefGoogle ScholarPubMed
Portnoy, G. A., Relyea, M. R., Decker, S., Shamaskin-Garroway, A., Driscoll, M., Brandt, C. A., & Haskell, S. G. (2018). Understanding gender differences in resilience among veterans: Trauma history and social ecology. Journal of Traumatic Stress, 31(6), 845855. https://doi.org/10.1002/jts.22341.CrossRefGoogle ScholarPubMed
Powers, M. B., Warren, A. M., Rosenfield, D., Roden-Foreman, K., Bennett, M., Reynolds, M. C., … Smits, J. A. J. (2014). Predictors of PTSD symptoms in adults admitted to a level I trauma center: A prospective analysis. Journal of Anxiety Disorders, 28(3), 301309. https://doi.org/10.1016/j.janxdis.2014.01.003.CrossRefGoogle Scholar
Reddan, M. C., Wager, T. D., & Schiller, D. (2018). Attenuating neural threat expression with imagination. Neuron, 100(4), 9941005.e4. https://doi.org/10.1016/j.neuron.2018.10.047.CrossRefGoogle ScholarPubMed
Rodman, A. M., Jenness, J. L., Weissman, D. G., Pine, D. S., & McLaughlin, K. A. (2019). Neurobiological markers of resilience to depression following childhood maltreatment: The role of neural circuits supporting the cognitive control of emotion. Biological Psychiatry, 86(6), 464473. https://doi.org/10.1016/j.biopsych.2019.04.033.CrossRefGoogle ScholarPubMed
Sailer, U., Robinson, S., Fischmeister, F. P. S., König, D., Oppenauer, C., Lueger-Schuster, B., … Bauer, H. (2008). Altered reward processing in the nucleus accumbens and mesial prefrontal cortex of patients with posttraumatic stress disorder. Neuropsychologia, 46(11), 28362844. https://doi.org/10.1016/j.neuropsychologia.2008.05.022.CrossRefGoogle ScholarPubMed
Schultze-Lutter, F., Schimmelmann, B. G., & Schmidt, S. J. (2016). Resilience, risk, mental health and well-being: Associations and conceptual differences. European Child & Adolescent Psychiatry, 25(5), 459466. https://doi.org/10.1007/s00787-016-0851-4.CrossRefGoogle ScholarPubMed
Schweizer, S., Walsh, N. D., Stretton, J., Dunn, V. J., Goodyer, I. M., & Dalgleish, T. (2016). Enhanced emotion regulation capacity and its neural substrates in those exposed to moderate childhood adversity. Social Cognitive and Affective Neuroscience, 11(2), 272281. https://doi.org/10.1093/scan/nsv109.CrossRefGoogle ScholarPubMed
Scott, J. C., Matt, G. E., Wrocklage, K. M., Crnich, C., Jordan, J., Southwick, S. M., … Schweinsburg, B. C. (2015). A quantitative meta-analysis of neurocognitive functioning in posttraumatic stress disorder. Psychological Bulletin, 141(1), 105140. https://doi.org/10.1037/a0038039.CrossRefGoogle ScholarPubMed
Scult, M. A., Knodt, A. R., Radtke, S. R., Brigidi, B. D., & Hariri, A. R. (2019). Prefrontal executive control rescues risk for anxiety associated with high threat and low reward brain function. Cerebral Cortex, 29(1), 7076. https://doi.org/10.1093/cercor/bhx304.CrossRefGoogle ScholarPubMed
Seeley, S. H., Boukezzi, S., DePierro, J. M., Charney, D. S., & Feder, A. (2023). Biological mechanisms of stress resilience: Human and animal studies. In Charney, D. S., Nestler, E. J., Buxbaum, J. D., Binder, E., Gordon, J. A., & Picciotto, M. (Eds.), Charney and nestler's neurobiology of mental illness (6th ed.). New York, NY: Oxford University Press.Google Scholar
Shalev, A., Liberzon, I., & Marmar, C. (2017). Post-traumatic stress disorder. New England Journal of Medicine, 376(25), 24592469. https://doi.org/10.1056/NEJMra1612499.CrossRefGoogle ScholarPubMed
Silveira, S., Shah, R., Nooner, K. B., Nagel, B. J., Tapert, S. F., de Bellis, M. D., & Mishra, J. (2020). Impact of childhood trauma on executive function in adolescence—mediating functional brain networks and prediction of high-risk drinking. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 5(5), 499509. https://doi.org/10.1016/j.bpsc.2020.01.011.Google ScholarPubMed
Silvers, J. A., Lumian, D. S., Gabard-Durnam, L., Gee, D. G., Goff, B., Fareri, D. S., … Tottenham, N. (2016). Previous institutionalization is followed by broader amygdala-hippocampal-PFC network connectivity during aversive learning in human development. Journal of Neuroscience, 36(24), 64206430. https://doi.org/10.1523/JNEUROSCI.0038-16.2016.CrossRefGoogle ScholarPubMed
Sinha, R., Lacadie, C. M., Constable, R. T., & Seo, D. (2016). Dynamic neural activity during stress signals resilient coping. Proceedings of the National Academy of Sciences, 113(31), 88378842. https://doi.org/10.1073/pnas.1600965113.CrossRefGoogle ScholarPubMed
Southwick, S. M., Charney, D. S., & DePierro, J. M. (2023). Resilience: The science of mastering life's greatest challenges (3rd ed.). Cambridge, United Kingdom; New York, NY: Cambridge University Press.Google Scholar
Speer, M. E., & Delgado, M. R. (2017). Reminiscing about positive memories buffers acute stress responses. Nature Human Behaviour, 1(5), 0093. https://doi.org/10.1038/s41562-017-0093.CrossRefGoogle ScholarPubMed
Spreng, R. N., & Andrews-Hanna, J. (2015). The default network and social cognition. Brain Mapping: An Encyclopedic Reference, 3, 165169. https://doi.org/10.1016/B978-0-12-397025-1.00173-1.CrossRefGoogle Scholar
Stevens, J. S., Harnett, N. G., Lebois, L. A. M., van Rooij, S. J. H., Ely, T. D., Roeckner, A., … Ressler, K. J. (2021). Brain-Based biotypes of psychiatric vulnerability in the acute aftermath of trauma. American Journal of Psychiatry, 178(11), 10371049. https://doi.org/10.1176/appi.ajp.2021.20101526.CrossRefGoogle ScholarPubMed
Stevens, J. S., & Jovanovic, T. (2019). Role of social cognition in post-traumatic stress disorder: A review and meta-analysis. Genes, Brain and Behavior, 18(1), e12518. https://doi.org/10.1111/gbb.12518.CrossRefGoogle ScholarPubMed
Stevens, J. S., Kim, Y. J., Galatzer-Levy, I. R., Reddy, R., Ely, T. D., Nemeroff, C. B., … Ressler, K. J. (2017). Amygdala reactivity and anterior cingulate habituation predict posttraumatic stress disorder symptom maintenance after acute civilian trauma. Biological Psychiatry, 81(12), 10231029. https://doi.org/10.1016/j.biopsych.2016.11.015.CrossRefGoogle ScholarPubMed
Stratta, P., Capanna, C., Dell'Osso, L., Carmassi, C., Patriarca, S., Di Emidio, G., … Rossi, A. (2015). Resilience and coping in trauma spectrum symptoms prediction: A structural equation modeling approach. Personality and Individual Differences, 77, 5561. https://doi.org/10.1016/j.paid.2014.12.035.CrossRefGoogle Scholar
Street, A. E., & Dardis, C. M. (2018). Using a social construction of gender lens to understand gender differences in posttraumatic stress disorder. Clinical Psychology Review, 66, 97105. https://doi.org/10.1016/j.cpr.2018.03.001.CrossRefGoogle ScholarPubMed
Swartz, J. R., Knodt, A. R., Radtke, S. R., & Hariri, A. R. (2015). A neural biomarker of psychological vulnerability to future life stress. Neuron, 85(3), 505511. https://doi.org/10.1016/j.neuron.2014.12.055.CrossRefGoogle ScholarPubMed
Szucs, D., & Ioannidis, J. PA. (2020). Sample size evolution in neuroimaging research: An evaluation of highly-cited studies (1990–2012) and of latest practices (2017–2018) in high-impact journals. NeuroImage, 221, 117164. https://doi.org/10.1016/j.neuroimage.2020.117164.CrossRefGoogle Scholar
Tashjian, S. M., & Galván, A. (2018). The role of mesolimbic circuitry in buffering election-related distress. Journal of Neuroscience, 38(11), 28872898. https://doi.org/10.1523/JNEUROSCI.2470-17.2018.CrossRefGoogle ScholarPubMed
Thompson, N. J., Fiorillo, D., Rothbaum, B. O., Ressler, K. J., & Michopoulos, V. (2018). Coping strategies as mediators in relation to resilience and posttraumatic stress disorder. Journal of Affective Disorders, 225, 153159. https://doi.org/10.1016/j.jad.2017.08.049.CrossRefGoogle ScholarPubMed
Thompson, P. M., Jahanshad, N., Ching, C. R. K., Salminen, L. E., Thomopoulos, S. I., Bright, J., … Zelman, V. (2020). ENIGMA and global neuroscience: A decade of large-scale studies of the brain in health and disease across more than 40 countries. Translational Psychiatry, 10(1), 128. https://doi.org/10.1038/s41398-020-0705-1.CrossRefGoogle ScholarPubMed
Tolin, D. F., & Foa, E. B. (2008). Sex differences in trauma and posttraumatic stress disorder: A quantitative review of 25 years of research. Psychological Trauma: Theory, Research, Practice, and Policy, S(1), 3785. https://doi.org/10.1037/1942-9681.S.1.37.CrossRefGoogle Scholar
Troy, A. S., & Mauss, I. B. (2011). Resilience in the face of stress: Emotion regulation as a protective factor. In Litz, B. T., Charney, D., Friedman, M. J., & Southwick, S. M. (Eds.), Resilience and mental health: Challenges across the lifespan (pp. 3044). Cambridge: Cambridge University Press. https://doi.org/10.1017/CBO9780511994791.004.CrossRefGoogle Scholar
van der Werff, S. J. A., van den Berg, S. M., Pannekoek, J. N., Elzinga, B. M., & Van Der Wee, N. J. A. (2013). Neuroimaging resilience to stress: A review. Frontiers in Behavioral Neuroscience, 7, 10211029. https://doi.org/10.3389/fnbeh.2013.00039.CrossRefGoogle ScholarPubMed
van Harmelen, A.-L., Gibson, J. L., Clair, M. C. S., Owens, M., Brodbeck, J., Dunn, V., … Goodyer, I. M. (2016). Friendships and family support reduce subsequent depressive symptoms in at-risk adolescents. PLOS ONE, 11(5), e0153715. https://doi.org/10.1371/journal.pone.0153715.CrossRefGoogle ScholarPubMed
van Harmelen, A. L., Kievit, R. A., Ioannidis, K., Neufeld, S., Jones, P. B., Bullmore, E., … Goodyer, I. (2017). Adolescent friendships predict later resilient functioning across psychosocial domains in a healthy community cohort. Psychological Medicine, 47(13), 23122322. https://doi.org/10.1017/S0033291717000836.CrossRefGoogle Scholar
van Rooij, S. J. H., Stevens, J. S., Ely, T. D., Hinrichs, R., Michopoulos, V., Winters, S. J., … Jovanovic, T. (2018). The role of the hippocampus in predicting future posttraumatic stress disorder symptoms in recently traumatized civilians. Biological Psychiatry, 84(2), 106115. https://doi.org/10.1016/j.biopsych.2017.09.005.CrossRefGoogle ScholarPubMed
Vythilingam, M., Nelson, E. E., Scaramozza, M., Waldeck, T., Hazlett, G., Southwick, S. M., … Ernst, M. (2009). Reward circuitry in resilience to severe trauma: An fMRI investigation of resilient special forces soldiers. Psychiatry Research: Neuroimaging, 172(1), 7577. https://doi.org/10.1016/j.pscychresns.2008.06.008.CrossRefGoogle ScholarPubMed
Walsh, W. A., Dawson, J., & Mattingly, M. J. (2010). How are we measuring resilience following childhood maltreatment? Is the research adequate and consistent? What is the impact on research, practice, and policy? Trauma, Violence, & Abuse, 11(1), 2741. https://doi.org/10.1177/1524838009358892.CrossRefGoogle ScholarPubMed
Wang, L., Paul, N., Stanton, S. J., Greeson, J. M., & Smoski, M. (2013). Loss of sustained activity in the ventromedial prefrontal cortex in response to repeated stress in individuals with early-life emotional abuse: Implications for depression vulnerability. Frontiers in Psychology, 4(320), 19. https://doi.org/10.3389/fpsyg.2013.00320.CrossRefGoogle ScholarPubMed
Watson, P. (2019). PTSD As a public mental health priority. Current Psychiatry Reports, 21(7), 61. https://doi.org/10.1007/s11920-019-1032-1.CrossRefGoogle ScholarPubMed
Waugh, C. E., & Koster, E. H. W. (2015). A resilience framework for promoting stable remission from depression. Clinical Psychology Review, 41, 4960. https://doi.org/10.1016/j.cpr.2014.05.004.CrossRefGoogle ScholarPubMed
Weathers, F. W., Bovin, M. J., Lee, D. J., Sloan, D. M., Schnurr, P. P., Kaloupek, D. G., … Marx, B. P. (2018). The Clinician-Administered PTSD Scale for DSM-5 (CAPS-5): Development and initial psychometric evaluation in military Veterans. Psychological Assessment, 30(3), 383395. https://doi.org/10.1037/pas0000486.CrossRefGoogle ScholarPubMed
Whittle, S., Dennison, M., Vijayakumar, N., Simmons, J. G., Yücel, M., Lubman, D. I., … Allen, N. B. (2013). Childhood maltreatment and psychopathology affect brain development during adolescence. Journal of the American Academy of Child & Adolescent Psychiatry, 52(9), 940952.e1. https://doi.org/10.1016/j.jaac.2013.06.007.CrossRefGoogle ScholarPubMed
Williams, M., Metzger, I., Leins, C., & DeLapp, C. (2018). Assessing racial trauma within a DSM–5 framework: The UConn racial/ethnic stress & trauma survey. Practice Innovations, 3(4), 242260. https://doi.org/10.1037/pri0000076.CrossRefGoogle Scholar
World Health Organization. (1993). The ICD-10 classification of mental and behavioural disorders: Diagnostic criteria for research. Geneva: Author.Google Scholar
Wymbs, N. F., Orr, C., Albaugh, M. D., Althoff, R. R., O'Loughlin, K., Holbrook, H., … Kaufman, J. (2020). Social supports moderate the effects of child adversity on neural correlates of threat processing. Child Abuse & Neglect, 102, 104413. https://doi.org/10.1016/j.chiabu.2020.104413.CrossRefGoogle ScholarPubMed
Yamamoto, T., Toki, S., Siegle, G. J., Takamura, M., Takaishi, Y., Yoshimura, S., … Yamawaki, S. (2017). Increased amygdala reactivity following early life stress: A potential resilience enhancer role. BMC Psychiatry, 17(1), 27. https://doi.org/10.1186/s12888-017-1201-x.CrossRefGoogle ScholarPubMed
Yehuda, R., & Flory, J. D. (2007). Differentiating biological correlates of risk, PTSD, and resilience following trauma exposure. Journal of Traumatic Stress, 20(4), 435447. https://doi.org/10.1002/jts.20260.CrossRefGoogle ScholarPubMed
Yehuda, R., Hoge, C. W., McFarlane, A. C., Vermetten, E., Lanius, R. A., Nievergelt, C. M., … Hyman, S. E. (2015). Post-traumatic stress disorder. Nature Reviews Disease Primers, 1, 15057. https://doi.org/10.1038/nrdp.2015.57.CrossRefGoogle ScholarPubMed
Yule, K., Houston, J., & Grych, J. (2019). Resilience in children exposed to violence: A meta-analysis of protective factors across ecological contexts. Clinical Child and Family Psychology Review, 22(3), 406431. https://doi.org/10.1007/s10567-019-00293-1.CrossRefGoogle ScholarPubMed
Zhang, W., Kaldewaij, R., Hashemi, M. M., Koch, S. B. J., Smit, A., van Ast, V. A., … Roelofs, K. (2022). Acute-stress-induced change in salience network coupling prospectively predicts post-trauma symptom development. Translational Psychiatry, 12(1), 63. https://doi.org/10.1038/s41398-022-01798-0.CrossRefGoogle ScholarPubMed
Zilverstand, A., Parvaz, M. A., & Goldstein, R. Z. (2017). Neuroimaging cognitive reappraisal in clinical populations to define neural targets for enhancing emotion regulation. A systematic review. NeuroImage, 151, 105116. https://doi.org/10.1016/j.neuroimage.2016.06.009.CrossRefGoogle ScholarPubMed
Zotev, V., Phillips, R., Misaki, M., Wong, C. K., Wurfel, B. E., Krueger, F., … Bodurka, J. (2018). Real-time fMRI neurofeedback training of the amygdala activity with simultaneous EEG in veterans with combat-related PTSD. NeuroImage: Clinical, 19, 106121. https://doi.org/10.1016/j.nicl.2018.04.010.CrossRefGoogle ScholarPubMed