Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-24T05:07:13.391Z Has data issue: false hasContentIssue false

Functional connectivity associated with improvement in emotion management after cognitive enhancement therapy in early-course schizophrenia

Published online by Cambridge University Press:  13 November 2020

Synthia Guimond*
Affiliation:
Department of Psychiatry, Beth Israel Deaconess Medical Center, Massachusetts Mental Health Center Division of Public Psychiatry, MA, 02115, USA Department of Psychiatry, Harvard Medical School, Boston, MA, 02115, USA Department of Psychiatry, The Royal's Institute of Mental Health Research, University of Ottawa, Ottawa, ON, K1Z 7K4, Canada Department of Psychoeducation and Psychology, University of Québec in Outaouais, Gatineau, QC, J8X 3X7, Canada Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, K1H 8L1, Canada
George Ling
Affiliation:
Department of Psychiatry, Beth Israel Deaconess Medical Center, Massachusetts Mental Health Center Division of Public Psychiatry, MA, 02115, USA University of Miami Miller School of Medicine, Miami, FL, 33136, USA
Jessica Drodge
Affiliation:
Department of Psychiatry, The Royal's Institute of Mental Health Research, University of Ottawa, Ottawa, ON, K1Z 7K4, Canada Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, K1H 8L1, Canada
Hannah Matheson
Affiliation:
Department of Psychiatry, The Royal's Institute of Mental Health Research, University of Ottawa, Ottawa, ON, K1Z 7K4, Canada
Jessica A. Wojtalik
Affiliation:
Jack, Joseph and Morton Mandel School of Applied Social Sciences, Case Western Reserve University, Cleveland, OH, 44106, USA
Betzamel Lopez
Affiliation:
Department of Psychiatry, Beth Israel Deaconess Medical Center, Massachusetts Mental Health Center Division of Public Psychiatry, MA, 02115, USA
Guusje Collin
Affiliation:
Department of Psychiatry, Beth Israel Deaconess Medical Center, Massachusetts Mental Health Center Division of Public Psychiatry, MA, 02115, USA Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA University Medical Center Utrecht Brain Center, 3584 XC Utrecht, The Netherlands
Roscoe Brady
Affiliation:
Department of Psychiatry, Beth Israel Deaconess Medical Center, Massachusetts Mental Health Center Division of Public Psychiatry, MA, 02115, USA Department of Psychiatry, Harvard Medical School, Boston, MA, 02115, USA
Raquelle I. Mesholam-Gately
Affiliation:
Department of Psychiatry, Beth Israel Deaconess Medical Center, Massachusetts Mental Health Center Division of Public Psychiatry, MA, 02115, USA Department of Psychiatry, Harvard Medical School, Boston, MA, 02115, USA
Heidi Thermenos
Affiliation:
Department of Psychiatry, Beth Israel Deaconess Medical Center, Massachusetts Mental Health Center Division of Public Psychiatry, MA, 02115, USA Department of Psychiatry, Harvard Medical School, Boston, MA, 02115, USA
Shaun M. Eack
Affiliation:
School of Social Work and Department of Psychiatry, University of Pittsburgh, 4200 Fifth Ave, Pittsburgh, PA 15260, USA
Matcheri S. Keshavan
Affiliation:
Department of Psychiatry, Beth Israel Deaconess Medical Center, Massachusetts Mental Health Center Division of Public Psychiatry, MA, 02115, USA Department of Psychiatry, Harvard Medical School, Boston, MA, 02115, USA
*
Author for correspondence: Synthia Guimond, E-mail: [email protected], [email protected]

Abstract

Background

The ability to manage emotions is an important social-cognitive domain impaired in schizophrenia and linked to functional outcome. The goal of our study was to examine the impact of cognitive enhancement therapy (CET) on the ability to manage emotions and brain functional connectivity in early-course schizophrenia.

Methods

Participants were randomly assigned to CET (n = 55) or an enriched supportive therapy (EST) control group (n = 45). The resting-state functional magnetic resonance imaging scans and measures of emotion management performances were collected at baseline, 9, and 18 months follow-up. The final sample consisted of 37 CET and 25 EST participants, including 19 CET and 12 EST participants with imaging data. Linear mixed-effects models investigated the impact of treatment on emotion management and functional connectivity from the amygdala to ventrolateral and dorsolateral prefrontal cortex (dlPFC).

Results

The CET group showed significant improvement over time in emotion management compared to EST. Neither functional connectivity changes nor main group differences were observed following treatment. However, a significant between-group interaction showed that improved emotion management ability was associated with increased functional connectivity between the left amygdala and the left dlPFC in the CET group exclusively.

Conclusion

Our results replicate the previous work demonstrating that CET is effective at improving some aspects of social cognition in schizophrenia. We found evidence that improvement in emotion management may be associated with a change in amygdala-dlPFC connectivity. This fronto-limbic circuit may provide a mechanistic link between the biology of emotion management processes that can be enhanced in individuals with schizophrenia.

Type
Original Article
Copyright
Copyright © The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

These authors contributed equally

References

Anticevic, A., Repovs, G., & Barch, D. M. (2012). Emotion effects on attention, amygdala activation, and functional connectivity in schizophrenia. Schizophrenia Bulletin, 38(5), 967980. https://doi.org/10.1093/schbul/sbq168.CrossRefGoogle Scholar
Ashburner, J. (2007). A fast diffeomorphic image registration algorithm. Neuroimage, 38(1), 95113. https://doi.org/10.1016/j.neuroimage.2007.07.007.CrossRefGoogle ScholarPubMed
Banks, S. J., Eddy, K. T., Angstadt, M., Nathan, P. J., & Luan Phan, K. (2007). Amygdala-frontal connectivity during emotion regulation. Social Cognitive and Affective Neuroscience, 2(4), 303312. https://doi.org/10.1093/scan/nsm029.CrossRefGoogle ScholarPubMed
Cabello, R., Sorrel, M. A., Fernández-Pinto, I., Extremera, N., & Fernández-Berrocal, P. (2016). Age and gender differences in ability emotional intelligence in adults: a cross-sectional study. Developmental Psychology, 52(9), 14861492. https://doi.org/10.1037/dev0000191.CrossRefGoogle ScholarPubMed
Campos, C., Santos, S., Gagen, E., Machado, S., Rocha, S., Kurtz, M. M., … Rocha, N. B. (2016). Neuroplastic changes following social cognition training in schizophrenia: a systematic review. Neuropsychology Review, 26(3), 310−328. https://doi.org/10.1007/s11065-016-9326-0.CrossRefGoogle ScholarPubMed
Cole, M., Anticevic, A., Repovs, G., & Barch, D. (2011). Variable global dysconnectivity and individual differences in schizophrenia. Biological Psychiatry, 70(1), 4350. https://doi.org/10.1016/j.biopsych.2011.02.010.CrossRefGoogle Scholar
De Raedt, R., & Koster, E. H. W. (2010). Understanding vulnerability for depression from a cognitive neuroscience perspective: a reappraisal of attentional factors and a new conceptual framework. Cognitive, Affective and Behavioral Neuroscience, 10(1), 50−70. https://doi.org/10.3758/CABN.10.1.50.CrossRefGoogle Scholar
De Raedt, R., Leyman, L., Baeken, C., Van Schuerbeek, P., Luypaert, R., Vanderhasselt, M. A., & Dannlowski, U. (2010). Neurocognitive effects of HF-rTMS over the dorsolateral prefrontal cortex on the attentional processing of emotional information in healthy women: an event-related fMRI study. Biological Psychology, 85(3), 487495. https://doi.org/10.1016/j.biopsycho.2010.09.015.CrossRefGoogle ScholarPubMed
Disner, S. G., Beevers, C. G., Haigh, E. A. P., & Beck, A. T. (2011). Neural mechanisms of the cognitive model of depression. Nature Reviews Neuroscience, 12(8), 467−477. https://doi.org/10.1038/nrn3027.CrossRefGoogle ScholarPubMed
Eack, S.M., Greeno, C.G., Pogue-Geile, M.F., Newhill, C.E., Hogarty, G.E., & Keshavan, M.S. (2010). Assessing social-cognitive deficits in schizophrenia with the Mayer–Salovey–Caruso emotional intelligence test. Schizophrenia Bulletin, 36, 370380. https://doi.org/10.1093/schbul/sbn091.CrossRefGoogle ScholarPubMed
Eack, S. M., Greenwald, D. P., Hogarty, S. S., Cooley, S. J., DiBarry, A. L., Montrose, D. M., & Keshavan, M. S. (2009). Cognitive enhancement therapy for early-course schizophrenia: effects of a two-year randomized controlled trial. Psychiatric Services, 60(11), 14681476. https://doi.org/10.1176/ps.2009.60.11.1468.CrossRefGoogle ScholarPubMed
Eack, S. M., Hogarty, G. E., Greenwald, D. P., Hogarty, S. S., & Keshavan, M. S. (2007). Cognitive enhancement therapy improves emotional intelligence in early course schizophrenia: preliminary effects. Schizophrenia Research, 89(1–3), 308311. https://doi.org/10.1016/j.schres.2006.08.018.CrossRefGoogle ScholarPubMed
Eack, S., Hogarty, S., Greenwald, D., Litschge, M., Mcknight, S., Bangalore, S., … Cornelius, J. (2015). Cognitive enhancement therapy in substance misusing schizophrenia: results of an 18-month feasibility trial. Schizophrenia Research, 161(2–3), 478483. https://doi.org/10.1016/j.schres.2014.11.017.CrossRefGoogle ScholarPubMed
Eack, S.M., Pogue-Geile, M.F., Greenwald, D.P., Hogarty, S.S., & Keshavan, M.S. (2011). Mechanisms of functional improvement in a 2-year trial of cognitive enhancement therapy for early schizophrenia. Psychological Medicine, 41, 12531261. https://doi.org/10.1017/S0033291710001765.CrossRefGoogle Scholar
Friston, K. J., Williams, S., Howard, R., Frackowiak, R. S. J., & Turner, R.. (1996). Movement-Related effects in fMRI time-series. Magnetic Resonance in Medicine, 35(3), 346355. http://dx.doi.org/10.1002/mrm.1910350312.CrossRefGoogle ScholarPubMed
Gohar, S., Hamdi, E., El Ray, L., Horan, W., & Green, M. (2013). Adapting and evaluating a social cognitive remediation program for schizophrenia in arabic. Schizophrenia Research, 148(1), 1217. https://doi.org/10.1016/j.schres.2013.05.008.CrossRefGoogle ScholarPubMed
Green, M., & Horan, W. (2010). Social cognition in schizophrenia. Current Directions in Psychological Science, 19(4), 243248. https://doi.org/10.1177/0963721410377600.CrossRefGoogle Scholar
Grynszpan, O., Perbal, S., Pelissolo, A., Fossati, P., Jouvent, R., Dubal, S., & Perez-Diaz, F. (2011). Efficacy and specificity of computer-assisted cognitive remediation in schizophrenia: a meta-analytical study. Psychological Medicine, 41(1), 163173. https://doi.org/10.1017/S0033291710000607.CrossRefGoogle ScholarPubMed
Guimond, S., Béland, S., & Lepage, M. (2018a). Strategy for semantic association memory (SESAME) training: effects on brain functioning in schizophrenia. Psychiatry Research - Neuroimaging, 271, 5058. https://doi.org/10.1016/j.pscychresns.2017.10.010.CrossRefGoogle Scholar
Guimond, S., Padani, S., Lutz, O., Eack, S., Thermenos, H., & Keshavan, M. (2018b). Impaired regulation of emotional distractors during working memory load in schizophrenia. Journal of Psychiatric Research, 101, 1420. https://doi.org/10.1016/j.jpsychires.2018.02.028.CrossRefGoogle Scholar
Hogarty, G. E. (2002). Personal therapy for schizophrenia and related disorders: A guide to individualized treatment. New York, US: Guilford Press.Google Scholar
Hogarty, G. E., Flesher, S., Ulrich, R., Carter, M., Greenwald, D., Pogue-Geile, M., … Zoretich, R. (2004). Cognitive enhancement therapy for schizophrenia: effects of a 2-year randomized trial on cognition and behavior. Archives of General Psychiatry, 61(9), 866876. https://doi.org/10.1001/archpsyc.61.9.866.CrossRefGoogle ScholarPubMed
Hogarty, G. E., Greenwald, D. P., & Eack, S. M. (2006). Special section: a memorial tribute: durability and mechanism of effects of cognitive enhancement therapy. Psychiatric Services, 57(12), 17511757. https://doi.org/10.1176/ps.2006.57.12.1751.CrossRefGoogle Scholar
Hoptman, M. J., D'Angelo, D., Catalano, D., Mauro, C. J., Shehzad, Z. E., Kelly, A. M. C., … Milham, M. P. (2010). Amygdalofrontal functional disconnectivity and aggression in schizophrenia. Schizophrenia Bulletin, 36(5), 10201028. https://doi.org/10.1093/schbul/sbp012.CrossRefGoogle Scholar
Horan, W. P., Kern, R. S., Tripp, C., Hellemann, G., Wynn, J. K., Bell, M., … Green, M. F. (2011). Efficacy and specificity of social cognitive skills training for outpatients with psychotic disorders. Journal of Psychiatric Research, 45(8), 11131122.CrossRefGoogle ScholarPubMed
Kambeitz-Ilankovic, L., Betz, L. T., Dominke, C., Haas, S. S., Subramaniam, K., Fisher, M., … Kambeitz, J. (2019). Multi-outcome meta-analysis (MOMA) of cognitive remediation in schizophrenia: revisiting the relevance of human coaching and elucidating interplay between multiple outcomes. Neuroscience and Biobehavioral Reviews, 107, 828845. https://doi.org/10.1016/j.neubiorev.2019.09.031.CrossRefGoogle ScholarPubMed
Kee, K.S., Horan, W.P., Salovey, P., Kern, R. S., Sergi, M. J., Fiske, A. P., … Green, M. F. (2009). Emotional intelligence in schizophrenia. Schizophrenia Research, 107, 6168. https://doi.org/10.1016/j.schres.2008.08.016.CrossRefGoogle Scholar
Keshavan, M. S., Eack, S. M., Prasad, K. M., Haller, C. S., & Cho, R. Y. (2017). Longitudinal functional brain imaging study in early course schizophrenia before and after cognitive enhancement therapy. NeuroImage, 151, 5564. https://doi.org/10.1016/j.neuroimage.2016.11.060.CrossRefGoogle ScholarPubMed
Kurtz, M., Gagen, E., Rocha, N., Machado, S., & Penn, D. (2016). Comprehensive treatments for social cognitive deficits in schizophrenia: a critical review and effect-size analysis of controlled studies. Clinical Psychology Review, 43, 8089. https://doi.org/10.1016/j.cpr.2015.09.003.CrossRefGoogle ScholarPubMed
Kurtz, M. M., & Richardson, C. L. (2012). Social cognitive training for schizophrenia: a meta-analytic investigation of controlled research. Schizophrenia Bulletin, 38(5), 10921104. https://doi.org/10.1093/schbul/sbr036.CrossRefGoogle ScholarPubMed
Kuznetsova, A., Brockhoff, P. B., & Christensen, R. H. B. (2017). Lmertest package: tests in linear mixed effects models. Journal of Statistical Software, 82(13), 1−26. https://doi.org/10.18637/jss.v082.i13.CrossRefGoogle Scholar
Laillier, R., Viard, A., Caillaud, M., Duclos, H., Bejanin, A., de La Sayette, V., … Laisney, M. (2019). Neurocognitive determinants of theory of mind across the adult lifespan. Brain and Cognition, 136, 103588. https://doi.org/10.1016/j.bandc.2019.103588.CrossRefGoogle ScholarPubMed
Lee, H., Heller, A. S., van Reekum, C. M., Nelson, B., & Davidson, R. J. (2012). Amygdala-prefrontal coupling underlies individual differences in emotion regulation. NeuroImage, 62(3), 15751581. https://doi.org/10.1016/j.neuroimage.2012.05.044.CrossRefGoogle ScholarPubMed
Lee, R. S. C., Redoblado-Hodge, M. A., Naismith, S. L., Hermens, D. F., Porter, M. A., & Hickie, I. B. (2013). Cognitive remediation improves memory and psychosocial functioning in first-episode psychiatric out-patients. Psychological Medicine, 43(6), 11611173. https://doi.org/10.1017/S0033291712002127.CrossRefGoogle ScholarPubMed
Lee, K. H., & Siegle, G. J. (2012). Common and distinct brain networks underlying explicit emotional evaluation: a meta-analytic study. Social Cognitive and Affective Neuroscience, 7(5), 521534. https://doi.org/10.1093/scan/nsp001.CrossRefGoogle ScholarPubMed
Ligeza, T. S., Wyczesany, M., Tymorek, A. D., & Kamiński, M. (2016). Interactions between the prefrontal Cortex and attentional systems during volitional affective regulation: an effective connectivity reappraisal study. Brain Topography, 29(2), 253261. https://doi.org/10.1007/s10548-015-0454-2.CrossRefGoogle ScholarPubMed
Liu, C., Zhang, W., Chen, G., Tian, H., Li, J., Qu, H., … Zhuo, C. (2017). Aberrant patterns of local and long-range functional connectivity densities in schizophrenia. Oncotarget, 8(29), 4819648203. https://doi.org/10.18632/oncotarget.18441.CrossRefGoogle Scholar
MacDonald, A., Cohen, J., Stenger, V., & Carter, C. (2000). Dissociating the role of the dorsolateral prefrontal and anterior cingulate cortex in cognitive control. Science, 288(5472), 18351838. https://doi.org/10.1126/science.288.5472.1835.CrossRefGoogle ScholarPubMed
Mars, R.B., Neubert, F.X., Noonan, M.A.P., Sallet, J., Toni, I., & Rushworth, M.F.S. (2012). On the relationship between the “default mode network” and the “social brain.” Frontiers in Human Neuroscience. 2012(6), 189. https://doi.org/10.3389/fnhum.2012.00189.Google Scholar
Mayer, J. D., Salovey, P., & Caruso, D. R. (2002) Mayer–Salovey–Caruso emotional intelligence test (MSCEIT). Toronto, Ontario: Multi-Health Systems, Inc. http://www.eiconsortium.org/measures/msceit.html.Google Scholar
Mayer, J. D., Salovey, P., & Caruso, D. R. (2012). The validity of the MSCEIT: additional analyses and evidence. Emotion Review, 4(4), 403408. https://doi.org/10.1177/1754073912445815.CrossRefGoogle Scholar
Mayer, J. D., Salovey, P., Caruso, D. R., & Sitarenios, G. (2003). Measuring emotional intelligence with the MSCEIT V2.0. Emotion, 3(1), 97105. https://doi.org/10.1037/1528-3542.3.1.97.CrossRefGoogle ScholarPubMed
Mike, L., Guimond, S., Kelly, S., Thermenos, H., Mesholam-Gately, R., Eack, S., & Keshavan, M. (2019). Social cognition in early course of schizophrenia: exploratory factor analysis. Psychiatry research, 272, 737743.CrossRefGoogle ScholarPubMed
Morawetz, C., Bode, S., Baudewig, J., & Heekeren, H. R. (2017). Effective amygdala-prefrontal connectivity predicts individual differences in successful emotion regulation. Social Cognitive and Affective Neuroscience, 12(4), 569585. https://doi.org/10.1093/scan/nsw169.CrossRefGoogle ScholarPubMed
Morris, R. W., Sparks, A., Mitchell, P. B., Weickert, C. S., & Green, M. J. (2012). Lack of cortico-limbic coupling in bipolar disorder and schizophrenia during emotion regulation. Translational Psychiatry, 2(3), e90. https://doi.org/10.1038/tp.2012.16.CrossRefGoogle ScholarPubMed
Mothersill, D., & Donohoe, G. (2019). Neural effects of cognitive training in schizophrenia: a systematic review and activation likelihood estimation meta-analysis. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 4(8), 688696.Google ScholarPubMed
Nuechterlein, K. H., Green, M. F., Kern, R. S., Baade, L. E., Barch, D. M., Cohen, J. D., … Marder, S. R. (2008). The MATRICS consensus cognitive battery, part 1: test selection, reliability, and validity. American Journal of Psychiatry, 165(2), 203213. https://doi.org/10.1176/appi.ajp.2007.07010042.CrossRefGoogle ScholarPubMed
Ochsner, K. N., Silvers, J. A., & Buhle, J. T. (2012). Functional imaging studies of emotion regulation: a synthetic review and evolving model of the cognitive control of emotion. Annals of the New York Academy of Sciences, 1251(1), E1E24. https://doi.org/10.1111/j.1749-6632.2012.06751.x.CrossRefGoogle ScholarPubMed
Park, J., Chun, J. W., Park, H. J., Kim, E., & Kim, J. J. (2018). Involvement of amygdala–prefrontal dysfunction in the influence of negative emotion on the resolution of cognitive conflict in patients with schizophrenia. Brain and Behavior, 8(8). https://doi.org/10.1002/brb3.1064.CrossRefGoogle ScholarPubMed
Penadés, R., González-Rodríguez, A., Catalán, R., Segura, B., Bernardo, M., & Junqué, C. (2017). Neuroimaging studies of cognitive remediation in schizophrenia: a systematic and critical review. World Journal of Psychiatry, 7(1), 34.CrossRefGoogle ScholarPubMed
Ramsay, I., & MacDonald, A. (2015). Brain correlates of cognitive remediation in schizophrenia: activation likelihood analysis shows preliminary evidence of neural target engagement. Schizophrenia Bulletin, 41(6), 12761284. https://doi.org/10.1093/schbul/sbv025.CrossRefGoogle ScholarPubMed
Ramsay, I. S., Nienow, T. M., Marggraf, M. P., & MacDonald, A. W. (2017). Neuroplastic changes in patients with schizophrenia undergoing cognitive remediation: triple-blind trial. The British Journal of Psychiatry, 210(3), 216222.CrossRefGoogle ScholarPubMed
Sanchez-Lopez, A., Vanderhasselt, M. A., Allaert, J., Baeken, C., & De Raedt, R. (2018). Neurocognitive mechanisms behind emotional attention: inverse effects of anodal tDCS over the left and right DLPFC on gaze disengagement from emotional faces. Cognitive, Affective and Behavioral Neuroscience, 18(3), 485494. https://doi.org/10.3758/s13415-018-0582-8.CrossRefGoogle ScholarPubMed
Szabó, Á. G., Farkas, K., Marosi, C., Kozák, L. R., Rudas, G., Réthelyi, J., & Csukly, G. (2017). Impaired mixed emotion processing in the right ventrolateral prefrontal cortex in schizophrenia: an fMRI study. BMC Psychiatry, 17(1), 391. https://doi.org/10.1186/s12888-017-1558-x.CrossRefGoogle Scholar
Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., Delcroix, N., … Joliot, M. (2002). Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. NeuroImage, 15(1), 273289. https://doi.org/10.1006/nimg.2001.0978.CrossRefGoogle ScholarPubMed
Ursu, S., Kring, A. M., Gard, M. G., Minzenberg, M. J., Yoon, J. H., Ragland, J. D., … Carter, C. S. (2011). Prefrontal cortical deficits and impaired cognition–emotion interactions in schizophrenia. American Journal of Psychiatry, 168(3), 276285. https://doi.org/10.1176/appi.ajp.2010.09081215.CrossRefGoogle Scholar
Wager, T. D., Davidson, M. L., Hughes, B. L., Lindquist, M. A., & Ochsner, K. N. (2008). Prefrontal–subcortical pathways mediating successful emotion regulation. Neuron, 59(6), 10371050. https://doi.org/10.1016/j.neuron.2008.09.006.CrossRefGoogle ScholarPubMed
Wei, Y. Y., Wang, J. J., Yan, C., Li, Z. Q., Pan, X., Cui, Y., … Tang, Y. X. (2016). Correlation between brain activation changes and cognitive improvement following cognitive remediation therapy in schizophrenia: an activation likelihood estimation meta-analysis. Chinese Medical Journal, 129(5), 578585. https://doi.org/10.4103/0366-6999.176983.CrossRefGoogle ScholarPubMed
Wojtalik, J. A., Hogarty, S. S., Cornelius, J. R., Phillips, M. L., Keshavan, M. S., Newhill, C. E., & Eack, S. M. (2016). Cognitive enhancement therapy improves frontolimbic regulation of emotion in alcohol and/or cannabis misusing schizophrenia: a preliminary study. Frontiers in Psychiatry, 6(JAN), 186. https://doi.org/10.3389/fpsyt.2015.00186.CrossRefGoogle ScholarPubMed
Wojtalik, J. A., Mesholam-Gately, R., Hogarty, S. S., Greenwald, D. P., Litschge, M. Y., Sandoval, L. R., … Eack, S. M. (submitted). Confirmatory efficacy of cognitive enhancement therapy for early course schizophrenia: results from a multi-site randomized controlled trial. Psychiatric Services.Google Scholar
Wykes, T., Huddy, V., Cellard, C., McGurk, S.R., & Czobor, P. (2011). A meta-analysis of cognitive remediation for schizophrenia: methodology and effect sizes. American Journal of Psychiatry, 168(5), 472485. https://doi.org/10.1176/appi.ajp.2010.10060855.CrossRefGoogle ScholarPubMed
Yan, C. G., Cheung, B., Kelly, C., Colcombe, S., Craddock, R. C., Di Martino, A., … Milham, M. P. (2013). A comprehensive assessment of regional variation in the impact of head micromovements on functional connectomics. Neuroimage, 76, 183201. doi: doi:10.1016/j.neuroimage.2013.03.004CrossRefGoogle ScholarPubMed
Yan, C. G., Wang, X. D., Zuo, X. N., & Zang, Y. F. (2016). DPABI: data processing & analysis for (resting-state) brain imaging. Neuroinformatics, 14(3), 339351. https://doi.org/10.1007/s12021-016-9299-4.CrossRefGoogle ScholarPubMed
Yoon, J., Minzenberg, M., Ursu, S., Ryan Walter, B., Walters, R., Wendelken, C., … Yoon, J. (2008). Association of dorsolateral prefrontal cortex dysfunction with disrupted coordinated brain activity in schizophrenia: relationship with impaired cognition, behavioral disorganization, and global function. The American Journal of Psychiatry, 165(8), 10061014. https://doi.org/10.1176/appi.ajp.2008.07060945.CrossRefGoogle ScholarPubMed
Zhang, C., Cahill, N. D., Arbabshirani, M. R., White, T., Baum, S. A., & Michael, A. M. (2016). Sex and age effects of functional connectivity in early adulthood. Brain connectivity, 6(9), 700713.CrossRefGoogle ScholarPubMed
Supplementary material: File

Guimond et al. supplementary material

Guimond et al. supplementary material

Download Guimond et al. supplementary material(File)
File 315 KB