Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-27T14:48:31.624Z Has data issue: false hasContentIssue false

The Edinburgh cohort of HIV-positive drug users: the relationship between auditory P3 latency, cognitive function and self-rated mood

Published online by Cambridge University Press:  09 July 2009

V. G. Egan
Affiliation:
Regional Infectious Diseases Unit, City Hospital; and MRC Brain Metabolism Unit, Royal Edinburgh Hospital, Edinburgh
A. Chiswick
Affiliation:
Regional Infectious Diseases Unit, City Hospital; and MRC Brain Metabolism Unit, Royal Edinburgh Hospital, Edinburgh
R. P. Brettle
Affiliation:
Regional Infectious Diseases Unit, City Hospital; and MRC Brain Metabolism Unit, Royal Edinburgh Hospital, Edinburgh
G. M. Goodwin*
Affiliation:
Regional Infectious Diseases Unit, City Hospital; and MRC Brain Metabolism Unit, Royal Edinburgh Hospital, Edinburgh
*
1Address for correspondence: Dr Guy M. Goodwin, MRC Brain Metabolism Unit, Royal Edinburgh Hospital, Morningside Park, Edinburgh EH10 5HF.

Synopsis

One hundred and six HIV-positive drug users were tested with a two-tone auditory evoked potential (AEP) task and a small battery of neuropsychological tests, to examine the relationship between the latency of the P300 component (P3) of the AEP, intellectual function, mood and drug use. Principal components analysis revealed a significant correlation between P3 latency and the first principal component (r = −0·43, P < 0·001). Varimax rotation generated three orthogonal components which we interpreted as intellectual performance, memory, and mood. Intellectual performance and self-reported mood were individually correlated with P3 latency, but memory was not (r = −0·36, P < 0·001; r = 0·23, P < 0·05; and r = −0·18, NS, respectively).

Subjects with symptomatic HIV disease had a higher correlation between P3 latency and intellectual performance than subjects with asymptomatic HIV disease and, among patients with symptomatic HIV disease, poorer memory was associated with a lower CD4 count. Opiate or benzodiazepine consumption did not correlate with poor intellectual performance, memory, or selfrated mood in our sample. These results indicate that there is a relationship between AEP latency and neuropsychological measures of intellectual function, and that it is influenced by subjective mood. Surprisingly, declared current drug use has no discriminable effect on these relationships.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Austin, M. P., Ross, M., Murray, C., O'Carroll, R. E., Ebmeier, K. P. & Goodwin, G. M. (1992). Cognitive function in major depression. Journal of Affective Disorders 25, 2130.CrossRefGoogle ScholarPubMed
Blackburn, I. M., Roxborough, H. M., Muir, W. J., Glabus, M. & Blackwood, D. H. R. (1990). Perceptual and physiological dysfunction in depression. Psychological Medicine 20, 95103.CrossRefGoogle ScholarPubMed
Blackwood, D. H. R., St Clair, D. M., Blackburn, I. M. & Tyrer, G. M. B. (1987). Cognitive brain potentials and neuropsychological deficits in presenile dementia Alzheimer type and Alcoholic Korsakoff Syndrome. Psychological Medicine 17, 349358.CrossRefGoogle Scholar
Brown, W. S., Marsh, J. T. & LaRue, A. (1982). Event-related potentials in psychiatry: differentiating depression and dementia in the elderly. Bulletin of the Los Angeles Neurological Society 47, 91107.Google ScholarPubMed
Caine, E. D. (1986). The neuropsychology of depression: the pseudodementia syndrome. In Neuropsychological Assessment of Neuropsychiatric Disorders (ed. Grant, I. and Adams, K. M.), pp. 221242. Oxford University Press: New York.Google Scholar
Catalan, J. (1991). HIV-associated dementia: a review of some conceptual and terminological problems. International Review of Psychiatry 3, 321330.CrossRefGoogle Scholar
Centres for Disease Control (1986). Classification system for human T-lymphotropic virus type III/lymphadenopathy-associated virus infection. Morbidity and Mortality Weekly Report 35, 334339.Google Scholar
Child, D. (1979). Essentials of Factor Analysis. Holt, Rinehart & Winston: London.Google Scholar
Cummings, J. L. (1986). Subcortical dementia: neuropsychology, neuropsychiatry, and pathophysiology. British Journal of Psychiatry 149, 682697.CrossRefGoogle ScholarPubMed
Curran, H. V. (1991). Benzodiazepines, memory and mood: a review. Psychopharmacology 105, 18.CrossRefGoogle ScholarPubMed
Deary, I. J. & Caryl, P. G. (1993). Intelligence, EEG and evoked potentials. In Biological Approaches to the Study of Human Intelligence. (ed. Vernon, P. A.), Abbex: Norwood, New Jersey. (In the press.)Google Scholar
Department of Health and Social Security (1984). Guidelines for the Management of Opiate Users. HMSO: London.Google Scholar
Egan, V. G. (1992). Neuropsychological aspects of HIV infection. AIDS Care 4, 110.CrossRefGoogle ScholarPubMed
Egan, V. G., Crawford, J. R., Brettle, R. P. & Goodwin, G. M. (1990). The Edinburgh cohort of HIV-positive drug users: current intellectual function is impaired, but not due to early AIDS dementia complex. AIDS 4, 651656.CrossRefGoogle Scholar
Egan, V. G., Brettle, R. P. & Goodwin, G. M. (1992). The Edinburgh cohort of HIV-positive drug users: the pattern of cognitive impairment in relation to disease progression. British Journal of Psychiatry 161, 522531.CrossRefGoogle Scholar
Goodin, D. S., Aminoff, M. J., Chernoff, D. N. & Hollander, H. (1990). Long latency event-related potentials in patients infected with human immunodeficiency virus. Annals of Neurology 27, 414419.CrossRefGoogle ScholarPubMed
Goodwin, G. M., Chiswick, A., Egan, V., St Clair, D. & Brettle, R. P. (1990). The Edinburgh cohort of HIV-positive drug users: prospective testing of brain function using auditory event-related potentials shows progressive slowing in patients with CDC stage IV disease. AIDS 4, 12431250.CrossRefGoogle Scholar
Goodwin, G. M., Egan, V., Chiswick, A. & Brettle, R. P. (1991). HIV and the brain: functional investigations in drug users. International Review of Psychiatry 3, 343356.CrossRefGoogle Scholar
Greden, J. F. & Carroll, J. B. (1981). Psychomotor function in affective disorders: an overview of new monitoring techniques. American Journal of Psychiatry 138, 14411448.Google ScholarPubMed
Homberg, V., Heffer, H., Granseyer, G., Stauss, W., Langee, H. & Henerici, M. (1986). Event-related potentials in patients with Huntington's disease and relatives at risk in relation to detailed psychometry. Electroencephalography and Clinical Neurophysiology 63, 552569.CrossRefGoogle ScholarPubMed
Krikorian, R. & Wrobel, A. J. (1991). Cognitive impairment in HIV infection. AIDS 5, 15011507.CrossRefGoogle ScholarPubMed
Lezak, M. D. (1983). Neuropsychological Assessment (2nd edn.). Oxford University Press: New York:.Google Scholar
Maxwell, J., Egan, V., Chiswick, A., Burns, S., Gordon, A., Kean, D., Brettle, R. P. & Pullen, I. (1991). HIV-1 associated cognitive/motor complex in an injecting drug user. AIDS Care 3, 373381.CrossRefGoogle Scholar
Mayeux, R., Stern, Y., Rosen, J. & Leventhal, J. (1981). Depression, intellectual impairment, and Parkinson's disease. Neurology 31, 645650.CrossRefGoogle Scholar
Meakin, C. J. (1992). Screening for depression in the medically ill: the future of paper and pencil tests. British Journal of Psychiatry 160, 212216.CrossRefGoogle ScholarPubMed
Messenheimer, J. A., Robertson, K. R., Wilkins, J. W., Kalkowski, R. & Hall, C. D. (1992). Event-related potentials in human immunodeficiency virus infection: a prospective study. Archives of Neurology 49, 396400.CrossRefGoogle ScholarPubMed
Miller, E. N., Selnes, O. A., McArthur, J. C., Satz, P., Becker, J. T., Cohen, B. A., Sheridan, K., Machada, A. M., Van Gorp, W. G. & Visscher, B. (1990). Neuropsychological performance in HIV-1 infected homosexual men: the multicentre AIDS cohort study (MACS). Neurology 40, 197203.CrossRefGoogle Scholar
Muir, W. J., St Clair, D. M. & Blackwood, D. H. R. (1991). Longlatency auditory event-related potentials in schizophrenia and in bipolar and unipolar affective disorder. Psychological Medicine 21, 867879.CrossRefGoogle ScholarPubMed
Navia, B. A., Jordon, B. D. & Price, R. W. (1986). The AIDS dementia complex I. Clinical features. Annals of Neurology 19, 517524.CrossRefGoogle ScholarPubMed
Nelson, H. E. & Willison, J. (1991). The Revised National Adult Reading Test – Test Manual. NFER – Nelson: Windsor, UK.Google Scholar
Neshuge, R., Barrett, G. & Subasaki, H. (1988). Auditory long latency event-related potentials in Alzheimer's disease and multi-infarct dementia. Journal of Neurology, Neurosurgery and Psychiatry 51, 11201125.CrossRefGoogle Scholar
Petito, C. (1988). Review of the central nervous system pathology in human immunodeficiency virus infection. Annals of Neurology 23, 554557.CrossRefGoogle ScholarPubMed
Polich, J., Ehlers, C. E., Otis, S., Mandell, A. J. & Bloom, F. E. (1986). P300 reflects the degree of cognitive decline in dementing illness. Electroencephalography and Clinical Neurophysiology 63, 138144.CrossRefGoogle ScholarPubMed
Price, R. W. & Brew, B. J. (1988). The AIDS dementia complex. Journal of Infectious Diseases 158, 10791083.CrossRefGoogle ScholarPubMed
Price, R. W., Brew, B., Sidtis, J., Rosenblum, M., Scheck, A. C. & Cleary, P. (1988). The brain in AIDS: central nervous system HIV-1 infection and AIDS dementia complex. Science 239, 586592.CrossRefGoogle ScholarPubMed
Razavi, D., Delvaux, N., Favacques, C. & Robaye, E. (1990). Screening for adjustment disorders and major depressive episodes in cancer inpatients. British Journal of Psychiatry 156, 7983.CrossRefGoogle Scholar
Reiten, R. M. & Davison, L. A. (1974). Clinical Neuropsychology: Current Status and Applications. Hemisphere: New York.Google Scholar
Rey, A. (1964). L'examen clinique en psychologie. Presses Universitaires de France: Paris.Google Scholar
Sutton, S., Braren, M., Zubin, J. & John, E. R. (1965). Evoked potential correlates of stimulus uncertainty. Science 150, 11871188.CrossRefGoogle ScholarPubMed
Tross, S., Price, R. W. & Navia, B. (1988). Neuropsychological characterisation of the AIDS dementia complex: a preliminary report. AIDS 2, 8188.CrossRefGoogle ScholarPubMed
Vernon, P. E. (1987). Intelligence and Speed of Information Processing. Ablex: Norwood, New Jersey.Google Scholar
Veterans Affairs Cooperative Study Group (1992). A controlled trial of early versus late treatment with zidovudine in symptomatic Human Immunodeficiency Virus infection. New England Journal of Medicine 326, 437443.CrossRefGoogle Scholar
Wechsler, D. A. (1981). Wechsler Adult Intelligence Scale – Revised. Test Manual. The Psychological Corporation: New York.Google Scholar
Wechsler, D. A. (1987). Wechsler Memory Scale – Revised Manual. The Psychological Corporation: New York.Google Scholar
World Health Organization (1990). Global Program on AIDS: Report on the Second Consultation on the Neuropsychiatric Aspects of HIV-1 Infection, Report Reference Number WHO/GPA/MNH/90.1: Geneva.Google Scholar
Zigmond, A. S. & Snaith, R. P. (1983). The Hospital Anxiety and Depression Scale. Acta Psychiatrica Scandinavica 67, 361370.CrossRefGoogle ScholarPubMed