Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-27T13:47:32.242Z Has data issue: false hasContentIssue false

Disrupted prefrontal regulation of striatum-related craving in Internet gaming disorder revealed by dynamic causal modeling: results from a cue-reactivity task

Published online by Cambridge University Press:  27 February 2020

Guang-Heng Dong*
Affiliation:
Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, PR China Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang Province, PR China
Min Wang
Affiliation:
Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, PR China
Hui Zheng
Affiliation:
Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai, PR China
Ziliang Wang
Affiliation:
School of Psychology, Beijing Normal University, Beijing10010, PR China
Xiaoxia Du
Affiliation:
Department of Physics, Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai, PR China
Marc N. Potenza
Affiliation:
Connecticut Mental Health Center, New Haven, CT, USA Connecticut Council on Problem Gambling, Wethersfield, CT, USA Department of Psychiatry, Department of Neurobiology, and Child Study Center, Yale University School of Medicine, New Haven, CT, USA
*
Author for correspondence: Guang-Heng Dong, E-mail: [email protected]

Abstract

Background

Studies of Internet gaming disorder (IGD) suggest an imbalanced relationship between cognitive control and reward processing in people with IGD. However, it remains unclear how these two systems interact with each other, and whether they could serve as neurobiological markers for IGD.

Methods

Fifty IGD subjects and matched individuals with recreational game use (RGU) were selected and compared when they were performing a cue-craving task. Regions of interests [anterior cingulate cortex (ACC), lentiform nucleus] were selected based on the comparison between brain responses to gaming-related cues and neutral cues. Directional connectivities among these brain regions were determined using Bayesian estimation. We additionally examined the posterior cingulate cortex (PCC) in a separate analysis based on data implicating the PCC in craving in addiction.

Results

During fixed-connectivity analyses, IGD subjects showed blunted ACC-to-lentiform and lentiform-to-ACC connectivity relative to RGU subjects, especially in the left hemisphere. When facing gaming cues, IGD subjects trended toward lower left-hemispheric modulatory effects in ACC-to-lentiform connectivity than RGU subjects. Self-reported cue-related craving prior to scanning correlated inversely with left-hemispheric modulatory effects in ACC-to-lentiform connectivity.

Conclusions

The results suggesting that prefrontal-to-lentiform connectivity is impaired in IGD provides a possible neurobiological mechanism for difficulties in controlling gaming-cue-elicited cravings. Reduced connectivity ACC-lentiform connectivity may be a useful neurobiological marker for IGD.

Type
Original Articles
Copyright
Copyright © The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aarseth, E., Bean, A. M., Boonen, H., Colder Carras, M., Coulson, M., Das, D., … Van Rooij, A. J. (2017). Scholars’ open debate paper on the World Health Organization ICD-11 Gaming Disorder proposal. Journal of Behavioral Addictions, 6(3), 267270. doi:10.1556/2006.5.2016.088.CrossRefGoogle ScholarPubMed
Bae, S., Han, D. H., Jung, J., Nam, K. C., & Renshaw, P. F. (2017). Comparison of brain connectivity between Internet gambling disorder and Internet gaming disorder: A preliminary study. Journal of Behavioral Addictions, 6(4), 505515. doi:10.1556/2006.6.2017.061.CrossRefGoogle ScholarPubMed
Bamford, N. S., Wightman, R. M., & Sulzer, D. (2018). Dopamine's effects on corticostriatal synapses during reward-based behaviors. Neuron, 97(3), 494510. doi:10.1016/j.neuron.2018.01.006.CrossRefGoogle ScholarPubMed
Bechara, A. (2005). Decision making, impulse control and loss of willpower to resist drugs: A neurocognitive perspective. Nature Neuroscience, 8(11), 14581463. doi:10.1038/nn1584.CrossRefGoogle ScholarPubMed
Billieux, J., King, D. L., Higuchi, S., Achab, S., Bowden-Jones, H., Hao, W., … Poznyak, V. (2017). Functional impairment matters in the screening and diagnosis of gaming disorder. Journal of Behavioral Addictions, 6(3), 285289. doi:10.1556/2006.6.2017.036.CrossRefGoogle ScholarPubMed
Bostan, A. C., & Strick, P. L. (2018). The basal ganglia and the cerebellum: Nodes in an integrated network. Nature Reviews Neuroscience, 19(6), 338350. doi:10.1038/s41583018-0002-7.CrossRefGoogle Scholar
Brand, M., Wegmann, E., Stark, R., Muller, A., Wolfling, K., Robbins, T. W., & Potenza, M. N. (2019). The Interaction of Person-Affect-Cognition-Execution (I-PACE) model for addictive behaviors: Update, generalization to addictive behaviors beyond internet-use disorders, and specification of the process character of addictive behaviors. Neuroscience and Biobehavioral Reviews, 104, 110. doi:10.1016/j.neubiorev.2019.06.032.CrossRefGoogle ScholarPubMed
Brand, M., Young, K. S., & Laier, C. (2014). Prefrontal control and internet addiction: A theoretical model and review of neuropsychological and neuroimaging findings. Frontiers in Human Neuroscience, 8, 375. doi:10.3389/fnhum.2014.00375.CrossRefGoogle ScholarPubMed
Brand, M., Young, K. S., Laier, C., Wolfling, K., & Potenza, M. N. (2016). Integrating psychological and neurobiological considerations regarding the development and maintenance of specific Internet-use disorders: An Interaction of Person-Affect-Cognition-Execution (I-PACE) model. Neuroscience and Biobehavioral Reviews, 71, 252266. doi:10.1016/j.neubiorev.2016.08.033.CrossRefGoogle ScholarPubMed
Brody, A. L., Mandelkern, M. A., Olmstead, R. E., Jou, J., Tiongson, E., Allen, V., … Tiffany, S. T. (2007). Neural substrates of resisting craving during cigarette cue exposure. Biological Psychiatry, 62(6), 642651.CrossRefGoogle ScholarPubMed
Cai, C. X., Yuan, K., Yin, J. S., Feng, D., Bi, Y. Z., Li, Y. D., … Tian, J. (2016). Striatum morphometry is associated with cognitive control deficits and symptom severity in internet gaming disorder. Brain Imaging and Behavior, 10(1), 1220. doi:10.1007/s11682-015-9358-8.CrossRefGoogle ScholarPubMed
Cousijn, J., Goudriaan, A. E., Ridderinkhof, K. R., van den Brink, W., Veltman, D. J., & Wiers, R. W. (2013). Neural responses associated with cue-reactivity in frequent cannabis users. Addiction Biology, 18(3), 570580. doi:10.1111/j.1369-1600.2011.00417.x.CrossRefGoogle ScholarPubMed
Cox, L. S., Tiffany, S. T., & Christen, A. G. (2001). Evaluation of the brief questionnaire of smoking urges (QSU-brief) in laboratory and clinical settings. Nicotine & Tobacco Research, 3(1), 716.CrossRefGoogle ScholarPubMed
Daunizeau, J., David, O., & Stephan, K. E. (2011). Dynamic causal modelling: A critical review of the biophysical and statistical foundations. NeuroImage, 58(2), 312322. doi:10.1016/j.neuroimage.2009.11.062.CrossRefGoogle ScholarPubMed
Davey, C. G., Breakspear, M., Pujol, J., & Harrison, B. J. (2017). A brain model of disturbed self-appraisal in depression. American Journal of Psychiatry, 174(9), 895903. doi:10.1176/appi.ajp.2017.16080883.CrossRefGoogle ScholarPubMed
DeVito, E. E., Worhunsky, P. D., Carroll, K. M., Rounsaville, B. J., Kober, H., & Potenza, M. N. (2012). A preliminary study of the neural effects of behavioral therapy for substance use disorders. Drug and Alcohol Dependence, 122(3), 228235. doi:10.1016/j.drugalcdep.2011.10.002.CrossRefGoogle ScholarPubMed
Dong, G., DeVito, E., Huang, J., & Du, X. (2012). Diffusion tensor imaging reveals thalamus and posterior cingulate cortex abnormalities in internet gaming addicts. Journal of Psychiatric Research, 46(9), 12121216. doi:10.1016/j.jpsychires.2012.05.015.CrossRefGoogle ScholarPubMed
Dong, G., Hu, Y., & Lin, X. (2013a). Reward/punishment sensitivities among internet addicts: Implications for their addictive behaviors. Progress in Neuropsychopharmacology and Biological Psychiatry, 46, 139145. doi:10.1016/j.pnpbp.2013.07.007.CrossRefGoogle Scholar
Dong, G., Hu, Y., Lin, X., & Lu, Q. (2013b). What makes Internet addicts continue playing online even when faced by severe negative consequences? Possible explanations from an fMRI study. Biological Psychology, 94(2), 282289. doi:10.1016/j.biopsycho.2013.07.009.CrossRefGoogle Scholar
Dong, G., Huang, J., & Du, X. (2011). Enhanced reward sensitivity and decreased loss sensitivity in Internet addicts: An fMRI study during a guessing task. Journal of Psychiatric Research, 45(11), 15251529. doi:10.1016/j.jpsychires.2011.06.017.CrossRefGoogle ScholarPubMed
Dong, G., Lin, X., Hu, Y., Xie, C., & Du, X. (2015). Imbalanced functional link between executive control network and reward network explain the online-game seeking behaviors in Internet gaming disorder. Scientific Reports, 5, 9197. doi:10.1038/srep09197.CrossRefGoogle ScholarPubMed
Dong, G., Liu, X., Zheng, H., Du, X., & Potenza, M. N. (2019a). Brain response features during forced break could predict subsequent recovery in internet gaming disorder: A longitudinal study. Journal of Psychiatric Research, 113, 1726. doi:10.1016/j.jpsychires.2019.03.003.CrossRefGoogle Scholar
Dong, G., & Potenza, M. N. (2016). Risk-taking and risky decision-making in Internet gaming disorder: Implications regarding online gaming in the setting of negative consequences. Journal of Psychiatric Research, 73(1), 18.CrossRefGoogle ScholarPubMed
Dong, G. H., & Potenza, M. N. (2014). A cognitive-behavioral model of Internet gaming disorder: Theoretical underpinnings and clinical implications. Journal of Psychiatric Research, 58, 711. doi:10.1016/j.jpsychires.2014.07.005.CrossRefGoogle ScholarPubMed
Dong, G., Wang, L., Du, X., & Potenza, M. N. (2017a). Gaming increases craving to gaming-related stimuli in individuals with internet gaming disorder. Biological Psychiatry Cognitive Neuroscience and Neuroimaging, 2(5), 404412. doi:10.1016/j.bpsc.2017.01.002.CrossRefGoogle Scholar
Dong, G., Wang, L., Du, X., & Potenza, M. N. (2018). Gender-related differences in neural responses to gaming cues before and after gaming: Implications for gender-specific vulnerabilities to Internet gaming disorder. Social Cognitive and Affective Neuroscience, 13(11), 12031214. doi: 10.1093/scan/nsy084.CrossRefGoogle ScholarPubMed
Dong, G., Wang, M., Liu, X., Liang, Q., Du, X., & Potenza, M. N. (2020). Cue-elicited craving-related lentiform activation during gaming deprivation is associated with the emergence of Internet gaming disorder. Addiction Biology, 25(1), in press. doi: 10.1111/adb.12713.CrossRefGoogle ScholarPubMed
Dong, G., Wang, Z., Wang, Y., Du, X., & Potenza, M. N. (2019b). Gender-related functional connectivity and craving during gaming and immediate abstinence during a mandatory break: Implications for development and progression of internet gaming disorder. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 88, 110. https://doi.org/10.1016/j.pnpbp.2018.04.009.CrossRefGoogle Scholar
Dong, G., Wang, L., Wu, L., & Potenza, M. (2017b). Cognitive control and reward/loss processing in Internet gaming disorder: Results from a comparison with recreational Internet game-users. European Psychiatry, 44, 3038. doi: 10.1016/j.eurpsy.2017.03.004.CrossRefGoogle Scholar
Dowling, N. A. (2014). Issues raised by the DSM-5 internet gaming disorder classification and proposed diagnostic criteria. Addiction, 109(9), 14081409.CrossRefGoogle ScholarPubMed
Engelmann, J. M., Versace, F., Robinson, J. D., Minnix, J. A., Lam, C. Y., Cui, Y., … Cinciripini, P. M. (2012). Neural substrates of smoking cue reactivity: A meta-analysis of fMRI studies. NeuroImage, 60(1), 252.CrossRefGoogle ScholarPubMed
Filbey, F. M., Claus, E., Audette, A. R., Niculescu, M., Banich, M. T., Tanabe, J., … Hutchison, K. E. (2008). Exposure to the taste of alcohol elicits activation of the mesocorticolimbic neurocircuitry. Neuropsychopharmacology, 33(6), 13911401. doi:10.1038/sj.npp.1301513.CrossRefGoogle ScholarPubMed
Fox, M. D., & Raichle, M. E. (2007). Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nature Reviews Neuroscience, 8(9), 700711. doi:10.1038/nrn2201.CrossRefGoogle ScholarPubMed
Franklin, T., Wang, Z., Suh, J. J., Hazan, R., Cruz, J., Li, Y., … Childress, A. R. (2011). Effects of varenicline on smoking cue-triggered neural and craving responses. Archives of General Psychiatry, 68(5), 516526. doi:10.1001/archgenpsychiatry.2010.190.CrossRefGoogle ScholarPubMed
Friston, K. J., Kahan, J., Razi, A., Stephan, K. E., & Sporns, O. (2014). On nodes and modes in resting state fMRI. NeuroImage, 99, 533547. doi:10.1016/j.neuroimage.2014.05.056.CrossRefGoogle ScholarPubMed
Friston, K. J., Moran, R., & Seth, A. K. (2013). Analysing connectivity with Granger causality and dynamic causal modelling. Current Opinions in Neurobiology, 23(2), 172178. doi:10.1016/j.conb.2012.11.010.CrossRefGoogle ScholarPubMed
Goldstein, R. Z., & Volkow, N. D. (2011). Oral methylphenidate normalizes cingulate activity and decreases impulsivity in cocaine addiction during an emotionally salient cognitive task. Neuropsychopharmacology, 36(1), 366367.CrossRefGoogle ScholarPubMed
Goudriaan, A. E., Ruiter, M. B. D., Brink, W. V. D., Oosterlaan, J., & Veltman, D. J. (2010). Brain activation patterns associated with cue reactivity and craving in abstinent problem gamblers, heavy smokers and healthy controls: An fMRI study. Addiction Biology, 15(4), 491503.CrossRefGoogle ScholarPubMed
Harris, C. D., Rowe, E. G., Randeniya, R., & Garrido, M. I. (2018). Bayesian model selection maps for group studies using M/EEG data. Frontiers in Neuroscience, 12, 598. doi:10.3389/fnins.2018.00598.CrossRefGoogle Scholar
Havlicek, M., Roebroeck, A., Friston, K., Gardumi, A., Ivanov, D., & Uludag, K. (2015). Physiologically informed dynamic causal modeling of fMRI data. NeuroImage, 122, 355372. doi:10.1016/j.neuroimage.2015.07.078.CrossRefGoogle ScholarPubMed
Hillebrandt, H, Friston, KJ, & Blakemore, SJ. (2014). Effective Connectivity During Animacy Perception--Dynamic Causal Modelling of Human Connectome Project Data. Scientific Reports, 4. DOI:10.1038/srep06240Google ScholarPubMed
Jasinska, A. J., Stein, E. A., Kaiser, J., Naumer, M. J., & Yalachkov, Y. (2014). Factors modulating neural reactivity to drug cues in addiction: A survey of human neuroimaging studies. Neuroscience and Biobehavioral Reviews, 38, 116. doi:10.1016/j.neubiorev.2013.10.013.CrossRefGoogle ScholarPubMed
Johnson, B. A., Chen, Y. R., Schmitz, J., Bordnick, P., & Shafer, A. (1998). Cue reactivity in cocaine-dependent subjects: Effects of cue type and cue modality. Addictive Behaviors, 23(1), 715.CrossRefGoogle ScholarPubMed
Kang, O. S., Chang, D. S., Jahng, G. H., Kim, S. Y., Kim, H., Kim, J. W., … Lee, H. (2012). Individual differences in smoking-related cue reactivity in smokers: An eye-tracking and fMRI study. Progress in Neuropsychopharmacology & Biological Psychiatry, 38(2), 285293.CrossRefGoogle ScholarPubMed
Kearney-Ramos, T. E., Dowdle, L. T., Lench, D. H., Mithoefer, O. J., Devries, W. H., George, M. S., … Hanlon, C. A. (2018). Transdiagnostic effects of ventromedial prefrontal cortex transcranial magnetic stimulation on cue reactivity. Biological Psychiatry Cognitive Neuroscience and Neuroimaging, 3(47), 599609. doi: 10.1016/j.bpsc.2018.03.016.CrossRefGoogle ScholarPubMed
King, D. L., & Gaming Industry Response, C. (2018). Comment on the global gaming industry's statement on ICD-11 gaming disorder: A corporate strategy to disregard harm and deflect social responsibility? Addiction, 113(11), 21452146. doi:10.1111/add.14388.CrossRefGoogle ScholarPubMed
Ko, C. H., Liu, G. C., Hsiao, S., Yen, J. Y., Yang, M. J., Lin, W. C., … Chen, C. S. (2009). Brain activities associated with gaming urge of online gaming addiction. Journal of Psychiatric Research, 43(7), 739.CrossRefGoogle ScholarPubMed
Kober, H., Mende-Siedlecki, P., Kross, E. F., Weber, J., Mischel, W., Hart, C. L., & Ochsner, K. N. (2010). Prefrontal-striatal pathway underlies cognitive regulation of craving. Proceedings of National Academy of Sciences of the United Stetes of American, 107(33), 1481114816. doi:10.1073/pnas.1007779107.CrossRefGoogle ScholarPubMed
Koopmann, A., Bach, P., Schuster, R., Bumb, J. M., Vollstadt-Klein, S., Reinhard, I., … Kiefer, F. (2019). Ghrelin modulates mesolimbic reactivity to alcohol cues in alcohol-addicted subjects: A functional imaging study. Addiction Biology, 24(5), 10661076. doi: 10.1111/adb.12651.CrossRefGoogle ScholarPubMed
Kosten, T. R., Scanley, B. E., Tucker, K. A., Oliveto, A., Prince, C., Sinha, R., … Wexler, B. E. (2006). Cue-induced brain activity changes and relapse in cocaine-dependent patients. Neuropsychopharmacology, 31(3), 644650.CrossRefGoogle ScholarPubMed
Krishnan-Sarin, S., Balodis, I. M., Kober, H., Worhunsky, P. D., Liss, T., Xu, J. S., & Potenza, M. N. (2013). An exploratory pilot study of the relationship between neural correlates of cognitive control and reduction in cigarette use among treatment-seeking adolescent smokers. Psychology of Addictive Behaviors, 27(2), 526532. doi:10.1037/a0032479.CrossRefGoogle ScholarPubMed
Kuss, D. J., & Griffiths, M. D. (2012). Online gaming addiction in children and adolescents: A review of empirical research. Journal of Behavioral Addictions, 1(1), 322. doi:10.1556/Jba.1.2012.1.1.CrossRefGoogle ScholarPubMed
Kuss, D. J., Pontes, H. M., & Griffiths, M. D. (2018). Neurobiological correlates in internet gaming disorder: A systematic literature review. Frontiers in Psychiatry, 9. doi:ARTN 16610.3389/fpsyt.2018.00166CrossRefGoogle ScholarPubMed
Lecrubier, Y., Sheehan, D. V., Weiller, E., Amorim, P., Bonora, I., Sheehan, K. H., … Dunbar, G. C. (1997). The Mini International Neuropsychiatric Interview (MINI). A short diagnostic structured interview: Reliability and validity according to the CIDI. European Psychiatry, 12(5), 224231.CrossRefGoogle Scholar
Liu, L., Yip, S. W., Zhang, J. T., Wang, L. J., Shen, Z. J., Liu, B., … Fang, X. Y. (2017). Activation of the ventral and dorsal striatum during cue reactivity in Internet gaming disorder. Addiction Biology, 22(3), 791801.CrossRefGoogle ScholarPubMed
Ma, S. S., Worhunsky, P. D., Xu, J. S., Yip, S. W., Zhou, N., Zhang, J. T., … Fang, X. Y. (2019). Alterations in functional networks during cue-reactivity in Internet gaming disorder. Journal of Behavioral Addictions, 8(2), 277287. doi:10.1556/2006.8.2019.25.CrossRefGoogle ScholarPubMed
Owens, M. M., Mackillop, J., Gray, J. C., Srh, B., Stein, M. D., Niaura, R. S., & Sweet, L. H. (2017). Neural correlates of tobacco cue reactivity predict duration to lapse and continuous abstinence in smoking cessation treatment. Addiction Biology, 23(5), 11891199.CrossRefGoogle ScholarPubMed
Park, S. M., Lee, J. Y., Choi, A. R., Kim, B. M., Chung, S. J., Park, M., … Choi, J. S. (2019). Maladaptive neurovisceral interactions in patients with Internet gaming disorder: A study of heart rate variability and functional neural connectivity using the graph theory approach. Addiction Biology, e12805. doi:10.1111/adb.12805.Google ScholarPubMed
Petry, N. M., Rehbein, F., Gentile, D. A., Lemmens, J. S., Rumpf, H. J., Mossle, T., … O'Brien, C. P. (2014). An international consensus for assessing internet gaming disorder using the new DSM-5 approach. Addiction, 109(9), 13991406. doi:10.1111/add.12457.CrossRefGoogle ScholarPubMed
Petry, N. M., Rehbein, F., Ko, C. H., & O'Brien, C. P. (2015). Internet gaming disorder in the DSM-5. Current Psychiatry Reports, 17(9), 72. doi:10.1007/s11920-015-0610-0.CrossRefGoogle ScholarPubMed
Potenza, M. N., Hong, K. I., Lacadie, C. M., Fulbright, R. K., Tuit, K. L., & Sinha, R. (2012). Neural correlates of stress-induced and cue-induced drug craving: Influences of sex and cocaine dependence. American Journal of Psychiatry, 169(4), 406414. doi:10.1176/appi.ajp.2011.11020289.CrossRefGoogle ScholarPubMed
Qi, X., Yang, Y. X., Dai, S. P., Gao, P. H., Du, X., Zhang, Y., … Zhang, Q. (2016). Effects of outcome on the covariance between risk level and brain activity in adolescents with internet gaming disorder. NeuroImage: Clinical, 12, 845851. doi:10.1016/j.nicl.2016.10.024.CrossRefGoogle ScholarPubMed
Rigoux, L., Stephan, K. E., Friston, K. J., & Daunizeau, J. (2014). Bayesian Model selection for group studies – revisited. NeuroImage, 84, 971985. doi:10.1016/j.neuroimage.2013.08.065.CrossRefGoogle Scholar
Rumpf, H. J., Achab, S., Billieux, J., Bowden-Jones, H., Carragher, N., Demetrovics, Z., … Poznyak, V. (2018). Including gaming disorder in the ICD-11: The need to do so from a clinical and public health perspective. Journal of Behavioral Addictions, 7(3), 556561. doi:10.1556/2006.7.2018.59.CrossRefGoogle Scholar
Saunders, J. B., Hao, W., Long, J., King, D. L., Mann, K., Fauth-Buhler, M., … Poznyak, V. (2017). Gaming disorder: Its delineation as an important condition for diagnosis, management, and prevention. Journal of Behavioral Addictions, 6(3), 271279. doi:10.1556/2006.6.2017.039.CrossRefGoogle Scholar
Stephan, K. E., Penny, W. D., Moran, R. J., den Ouden, H. E. M., Daunizeau, J., & Friston, K. J. (2010). Ten simple rules for dynamic causal modeling. NeuroImage, 49(4), 30993109. doi:10.1016/j.neuroimage.2009.11.015.CrossRefGoogle ScholarPubMed
Sun, Y., Ying, H., Seetohul, R. M., Xuemei, W., Ya, Z., Qian, L., … Ye, S. (2012). Brain fMRI study of crave induced by cue pictures in online game addicts (male adolescents). Behavioural Brain Research, 233(2), 563576.CrossRefGoogle Scholar
Tapert, S. F., Cheung, E. H., Brown, G. G., Frank, L. R., Paulus, M. P., Schweinsburg, A. D., … Brown, S. A. (2003). Neural response to alcohol stimuli in adolescents with alcohol use disorder. Archives of General Psychiatry, 60(7), 727735. doi:10.1001/archpsyc.60.7.727.CrossRefGoogle ScholarPubMed
Volkow, N. D., Fowler, J. S., Wang, G. J., Telang, F., Logan, J., Jayne, M., … Swanson, J. M. (2010). Cognitive control of drug craving inhibits brain reward regions in cocaine abusers. NeuroImage, 49(3), 25362543. doi:10.1016/j.neuroimage.2009.10.088.CrossRefGoogle ScholarPubMed
Walker, D. M., Cates, H. M., Loh, Y. E., Purushothaman, I., Ramakrishnan, A., Cahill, K. M., … Nestler, E. J. (2018). Cocaine self-administration alters transcriptome-wide responses in the brain's reward circuitry. Biological Psychiatry, 84(12), 867880. doi: 10.1016/j.biopsych.2018.04.009.CrossRefGoogle ScholarPubMed
Wang, Y., Wu, L., Wang, L., Zhang, Y., Du, X., & Dong, G. (2017). Impaired decision-making and impulse control in Internet gaming addicts: Evidence from the comparison with recreational Internet game users. Addiction Biology, 22(6), 16101621. doi: 10.1111/adb.12458.CrossRefGoogle ScholarPubMed
Wartberg, L., Kriston, L., Zieglmeier, M., Lincoln, T., & Kammerl, R. (2019). A longitudinal study on psychosocial causes and consequences of Internet gaming disorder in adolescence. Psychological Medicine, 49(2), 287294. doi:10.1017/S003329171800082X.CrossRefGoogle ScholarPubMed
Weinstein, A. M. (2017). An update overview on brain imaging studies of internet gaming disorder. Frontiers in Psychiatry, 8, 185. doi:10.3389/fpsyt.2017.00185.CrossRefGoogle ScholarPubMed
Weinstein, A., Livny, A., & Weizman, A. (2017). New developments in brain research of internet and gaming disorder. Neuroscience and Biobehavioral Reviews, 75, 314330. doi:10.1016/j.neubiorev.2017.01.040.CrossRefGoogle ScholarPubMed
Yalachkov, Y., Kaiser, J., & Naumer, M. J. (2012). Functional neuroimaging studies in addiction: Multisensory drug stimuli and neural cue reactivity. Neuroscience & Biobehavioral Reviews, 36(2), 825835.CrossRefGoogle ScholarPubMed
Yao, Y. W., Liu, L., Ma, S. S., Shi, X. H., Zhou, N., Zhang, J. T., & Potenza, M. N. (2017). Functional and structural neural alterations in Internet gaming disorder: A systematic review and meta-analysis. Neuroscience and Biobehavioral Reviews, 83, 313324. doi:10.1016/j.neubiorev.2017.10.029.CrossRefGoogle ScholarPubMed
Young, K. S. (2009). Internet Addiction Test (IAT). http://netaddiction.com/internetaddiction-test/.Google Scholar
Zakiniaeiz, Y., Scheinost, D., Seo, D., Sinha, R., & Constable, R. T. (2017a). Cingulate cortex functional connectivity predicts future relapse in alcohol dependent individuals. NeuroImage: Clinical, 13, 181187. doi:10.1016/j.nicl.2016.10.019.CrossRefGoogle Scholar
Zakiniaeiz, Y., Yip, S. W., Balodis, I. M., Lacadie, C. M., Scheinost, D., Constable, R. T., … Potenza, M. N. (2017b). Altered functional connectivity to stressful stimuli in prenatally cocaine-exposed adolescents. Drug and Alcohol Dependence, 180, 129136. doi:10.1016/j.drugalcdep.2017.07.030.CrossRefGoogle Scholar
Zhang, J. T., Yao, Y. W., Potenza, M. N., Xia, C. C., Lan, J., Liu, L., … Fang, X. Y. (2016). Effects of craving behavioral intervention on neural substrates of cue-induced craving in Internet gaming disorder. NeuroImage: Clinical, 12, 591599. doi:10.1016/j.nicl.2016.09.004.CrossRefGoogle ScholarPubMed
Zheng, H., Hu, Y., Wang, Z., Wang, M., Du, X., & Dong, G. (2019). Meta-analyses of the functional neural alterations in subjects with Internet gaming disorder: Similarities and differences across different paradigms. Progress in Neuropsychopharmacology and Biological Psychiatry, 94, 109656. doi:10.1016/j.pnpbp.2019.109656.CrossRefGoogle ScholarPubMed
Zuo, X. N., Ehmke, R., Mennes, M., Imperati, D., Castellanos, F. X., Sporns, O., & Milham, M. P. (2012). Network centrality in the human functional connectome. Cerebral Cortex, 22(8), 18621875.CrossRefGoogle ScholarPubMed