Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-25T12:34:43.973Z Has data issue: false hasContentIssue false

Depression networks: a systematic review of the network paradigm causal assumptions

Published online by Cambridge University Press:  17 March 2023

Debbie Huang*
Affiliation:
Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
Ezra Susser
Affiliation:
Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA New York State Psychiatric Institute, New York, New York, United States of America
Kara E. Rudolph
Affiliation:
Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
Katherine M. Keyes
Affiliation:
Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
*
Author for correspondence: Debbie Huang, E-mail: [email protected]

Abstract

The network paradigm for psychiatric disorder nosology was proposed based on the hypothesis that mental disorders are caused by networks of symptoms that are themselves causally related. Researchers have widely applied and integrated this paradigm to examine a variety of mental disorders, particularly depression. Existing studies generally focus on the correlation structure of symptoms, inferring causal relationships. Thus, presumption of causality may not be justified. The goal of this review was to examine the assumptions necessary for causal inference in network studies of depression. Specifically, we examined whether and how network studies address common violations of causal assumptions (i.e. no measurement error, exchangeability, and positivity). Of the 41 studies reviewed, five (12%) studies discussed sources of confounding unrelated to measurement error; none discussed positivity; and five conducted post-hoc analysis for measurement error. Depression network studies, in principle, are conducted under the assumption that symptom relationships are causal. Yet, in practice, studies seldomly discussed or adequately tested assumptions required to infer causality. Researchers continue to design studies that are unable to support the credibility of the network paradigm for the study of depression. There is a critical need to ensure scientific efforts cease to perpetuate problematic designs and findings to a potentially unsubstantiated paradigm.

Type
Review Article
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

aan het Rot, M., Hogenelst, K., & Schoevers, R. A. (2012). Mood disorders in everyday life: A systematic review of experience sampling and ecological momentary assessment studies. Clinical Psychology Review, 32(6), 510523. doi: 10.1016/j.cpr.2012.05.007CrossRefGoogle ScholarPubMed
American Psychiatric Association, DSM-5 Task Force. (2013). Diagnostic and statistical manual of mental disorders: DSM-5™ (5th ed.). Arlington, VA: American Psychiatric Publishing, Inc. doi: 10.1176/appi.books.9780890425596.Google Scholar
Beck, A. T., Ward, C. H., Mendelson, M., Mock, J., & Erbaugh, J. (1961). An inventory for measuring depression. Archives of General Psychiatry, 4(6), 561571. doi: 10.1001/archpsyc.1961.01710120031004CrossRefGoogle ScholarPubMed
Berlim, M. T., Richard-Devantoy, S., Dos Santos, N. R., & Turecki, G. (2020). The network structure of core depressive symptom-domains in major depressive disorder following antidepressant treatment: A randomized clinical trial. Psychological Medicine, 51(14), 23992413. doi: 10.1017/s0033291720001002.CrossRefGoogle Scholar
Bhattacharya, R., Malinsky, D., & Shpitser, I. (2019). Causal inference under interference and network uncertainty. Uncertainty in artificial intelligence: Proceedings of the Conference on Uncertainty in Artificial Intelligence, 2019.Google Scholar
Borgatti, S. P., Carley, K. M., & Krackhardt, D. (2006). On the robustness of centrality measures under conditions of imperfect data. Social Networks, 28(2), 124136. doi: 10.1016/j.socnet.2005.05.001CrossRefGoogle Scholar
Borsboom, D. (2008). Psychometric perspectives on diagnostic systems. Journal of Clinical Psychology, 64(9), 10891108. doi:https://doi.org/10.1002/jclp.20503CrossRefGoogle ScholarPubMed
Borsboom, D. (2017). A network theory of mental disorders. World Psychiatry, 16(1), 513. doi: 10.1002/wps.20375CrossRefGoogle ScholarPubMed
Borsboom, D., Deserno, M. K., Rhemtulla, M., Epskamp, S., Fried, E. I., McNally, R. J., … Waldorp, L. J. (2021). Network analysis of multivariate data in psychological science. Nature Reviews Methods Primers, 1(1), 58. doi: 10.1038/s43586-021-00055-wCrossRefGoogle Scholar
Borsboom, D., Fried, E. I., Epskamp, S., Waldorp, L. J., van Borkulo, C. D., van der Maas, H. L. J., & Cramer, A. O. J. (2017). False alarm? A comprehensive reanalysis of ‘Evidence that psychopathology symptom networks have limited replicability’ by Forbes, Wright, Markon, and Krueger (2017). Journal of Abnormal Psychology, 126(7), 989999. doi: 10.1037/abn0000306CrossRefGoogle ScholarPubMed
Boschloo, L., van Borkulo, C. D., Borsboom, D., & Schoevers, R. A. (2016). A prospective study on how symptoms in a network predict the onset of depression. Psychotherapy and Psychosomatics, 85(3), 183184. doi: 10.1159/000442001CrossRefGoogle Scholar
Bringmann, L. F., Elmer, T., Epskamp, S., Krause, R. W., Schoch, D., Wichers, M., … Snippe, E. (2019). What do centrality measures measure in psychological networks? Journal of Abnormal Psychology, 128(8), 892903. doi: 10.1037/abn0000446CrossRefGoogle ScholarPubMed
Bringmann, L. F., Lemmens, L., Huibers, M. J. H., Borsboom, D., & Tuerlinckx, F. (2015). Revealing the dynamic network structure of the Beck Depression Inventory-II. Psychological Medicine, 45(4), 747757. doi: 10.1017/s0033291714001809CrossRefGoogle ScholarPubMed
Bringmann, L. F., Vissers, N., Wichers, M., Geschwind, N., Kuppens, P., Peeters, F., … Tuerlinckx, F. (2013). A network approach to psychopathology: New insights into clinical longitudinal data. PLoS ONE, 8(4), e60188. doi: 10.1371/journal.pone.0060188CrossRefGoogle ScholarPubMed
Buonaccorsi, J. (2010). Measurement error. New York, NY: Chapman and Hall/CRC.CrossRefGoogle Scholar
Cole, S. R., & Frangakis, C. E. (2009). The consistency statement in causal inference: A definition or an assumption? Epidemiology (Cambridge, Mass.), 20(1), 35. doi: 10.1097/EDE.0b013e31818ef366CrossRefGoogle ScholarPubMed
Colman, I., & Ataullahjan, A. (2010). Life course perspectives on the epidemiology of depression. The Canadian Journal of Psychiatry. Revue canadienne de psychiatrie, 55(10), 622632. doi: 10.1177/070674371005501002CrossRefGoogle ScholarPubMed
Contreras, A., Nieto, I., Valiente, C., Espinosa, R., & Vazquez, C. (2019). The study of psychopathology from the network analysis perspective: A systematic review. Psychotherapy and Psychosomatics, 88(2), 7183. doi: 10.1159/000497425CrossRefGoogle Scholar
Cramer, A. O. J., van Borkulo, C. D., Giltay, E. J., van der Maas, H. L. J., Kendler, K. S., Scheffer, M., & Borsboom, D. (2016). Major depression as a complex dynamic system. PLoS ONE, 11(12), e0167490. doi: 10.1371/journal.pone.0167490CrossRefGoogle ScholarPubMed
Dalege, J., Borsboom, D., van Harreveld, F., & van der Maas, H. L. J. (2017). Network analysis on attitudes: A brief tutorial. Social Psychological and Personality Science, 8(5), 528537. doi: 10.1177/1948550617709827CrossRefGoogle ScholarPubMed
Forbes, M. K., Wright, A. G. C., Markon, K. E., & Krueger, R. F. (2019). Quantifying the reliability and replicability of psychopathology network characteristics. Multivariate Behavioral Research, 56(2), 224242. doi: 10.1080/00273171.2019.1616526.Google Scholar
Forbes, M. K., Wright, A. G. C., Markon, K. E., & Krueger, R. F. (2017a). Evidence that psychopathology symptom networks have limited replicability. Journal of Abnormal Psychology, 126(7), 969988. doi: 10.1037/abn0000276CrossRefGoogle ScholarPubMed
Forbes, M. K., Wright, A. G. C., Markon, K. E., Krueger, R. F. (2017b). Further evidence that psychopathology networks have limited replicability and utility: Response to Borsboom et al. (2017) and Steinley et al. (2017). Journal of Abnormal Psychology, 126(7), 10111016. doi: 10.1037/abn0000313CrossRefGoogle ScholarPubMed
Forbes, M. K., Wright, A. G. C., Markon, K. E., & Krueger, R. F. (2021). On unreplicable inferences in psychopathology symptom networks and the importance of unreliable parameter estimates. Multivariate Behavioral Research, 56(2), 368376. doi: 10.1080/00273171.2021.1886897CrossRefGoogle ScholarPubMed
Frantz, T. L., Cataldo, M., & Carley, K. M. (2009). Robustness of centrality measures under uncertainty: Examining the role of network topology. Computational and Mathematical Organization Theory, 15(4), 303. doi: 10.1007/s10588-009-9063-5CrossRefGoogle Scholar
Fried, E. I. (2015). Problematic assumptions have slowed down depression research: Why symptoms, not syndromes are the way forward. Frontiers in Psychology, 6, 309309. doi: 10.3389/fpsyg.2015.00309CrossRefGoogle Scholar
Fried, E. I., & Cramer, A. O. J. (2017). Moving forward: Challenges and directions for psychopathological network theory and methodology. Perspectives on Psychological Science, 12(6), 9991020. doi: 10.1177/1745691617705892CrossRefGoogle ScholarPubMed
Fried, E. I., Epskamp, S., Nesse, R. M., Tuerlinckx, F., & Borsboom, D. (2016). What are ‘good’ depression symptoms? Comparing the centrality of DSM and non-DSM symptoms of depression in a network analysis. Journal of Affective Disorders, 189, 314320. doi: 10.1016/j.jad.2015.09.005CrossRefGoogle Scholar
Funkhouser, C. J., Correa, K. A., Gorka, S. M., Nelson, B. D., Phan, K. L., & Shankman, S. A. (2020). The replicability and generalizability of internalizing symptom networks across five samples. Journal of Abnormal Psychology, 129(2), 191203. doi: 10.1037/abn0000496CrossRefGoogle ScholarPubMed
Granger, C. W. J. (1969). Investigating causal relations by econometric models and cross-spectral methods. Econometrica, 37(3), 424438. doi: 10.2307/1912791CrossRefGoogle Scholar
Greenland, S., & Robins, J. M. (2009). Identifiability, exchangeability and confounding revisited. Epidemiologic Perspectives & Innovations, 6(1), 4. doi: 10.1186/1742-5573-6-4CrossRefGoogle ScholarPubMed
Guloksuz, S., Pries, L. K., & van Os, J. (2017). Application of network methods for understanding mental disorders: Pitfalls and promise. Psychological Medicine, 47(16), 27432752. doi: 10.1017/s0033291717001350CrossRefGoogle ScholarPubMed
Hallquist, M. N., Wright, A. G. C., & Molenaar, P. C. M. (2021). Problems with centrality measures in psychopathology symptom networks: Why network psychometrics cannot escape psychometric theory. Multivariate Behavioral Research, 56(2), 199223. doi: 10.1080/00273171.2019.1640103CrossRefGoogle ScholarPubMed
Hayes, A. M., & Strauss, J. L. (1998). Dynamic systems theory as a paradigm for the study of change in psychotherapy: An application to cognitive therapy for depression. Journal of Consulting and Clinical Psychology, 66(6), 939.CrossRefGoogle Scholar
Hernán, M., & Robins, J. (2020). Causal inference: What if. Boca Raton: Chapman & Hall/CRC.Google Scholar
Jones, P. J., Williams, D. R., & McNally, R. J.. (2020). Sampling variability is not nonreplication: A Bayesian reanalysis of Forbes, Wright, Markon, and Krueger. Multivariate Behavioral Research, 56(2), 249255. 10.1080/00273171.2020.1797460.Google Scholar
Kendler, K. S., Aggen, S. H., Flint, J., Borsboom, D., & Fried, E. I. (2018). The centrality of DSM and non-DSM depressive symptoms in Han Chinese women with major depression. Journal of Affective Disorders, 227, 739744. doi: 10.1016/j.jad.2017.11.032CrossRefGoogle Scholar
Kendler, K. S., Zachar, P., & Craver, C. (2011). What kinds of things are psychiatric disorders? Psychological Medicine, 41(6), 11431150. doi: 10.1017/s0033291710001844CrossRefGoogle ScholarPubMed
Kessler, R. C., Chiu, W. T., Demler, O., Merikangas, K. R., & Walters, E. E. (2005). Prevalence, severity, and comorbidity of 12-month DSM-IV disorders in the national comorbidity survey replication. Archives of General Psychiatry, 62(6), 617627. doi: 10.1001/archpsyc.62.6.617CrossRefGoogle ScholarPubMed
Kim, P. J., & Jeong, H. (2007). Reliability of rank order in sampled networks. The European Physical Journal B, 55(1), 109114. doi: 10.1140/epjb/e2007-00033-7CrossRefGoogle Scholar
Kroenke, K., Spitzer, R. L., & Williams, J. B. (2001). The PHQ-9: Validity of a brief depression severity measure. Journal of General Internal Medicine, 16(9), 606613. doi: 10.1046/j.1525-1497.2001.016009606.xCrossRefGoogle ScholarPubMed
Malgaroli, M., Calderon, A., & Bonanno, G. A. (2021). Networks of major depressive disorder: A systematic review. Clinical Psychology Review, 85, 102000. doi: 10.1016/j.cpr.2021.102000CrossRefGoogle ScholarPubMed
Martin, C., & Niemeyer, P. (2019). Influence of measurement errors on networks: Estimating the robustness of centrality measures. Network Science, 7, 180195. doi: 10.1017/nws.2019.12CrossRefGoogle Scholar
Nesse, R. M., & Stein, D. J. (2012). Towards a genuinely medical model for psychiatric nosology. BMC Medicine, 10(1), 5. doi: 10.1186/1741-7015-10-5CrossRefGoogle ScholarPubMed
Pearl, J. (2000). Causality: Models, reasoning, and inference. New York, NY, USA: Cambridge University Press.Google Scholar
Petersen, M. L., Porter, K. E., Gruber, S., Wang, Y., & van der Laan, M. J. (2012). Diagnosing and responding to violations in the positivity assumption. Statistical Methods in Medical Research, 21(1), 3154. doi: 10.1177/0962280210386207CrossRefGoogle ScholarPubMed
Piccinelli, M., & Wilkinson, G. (2000). Gender differences in depression. Critical review. The British Journal of Psychiatry: The Journal of Mental Science, 177, 486492. doi: 10.1192/bjp.177.6.486CrossRefGoogle ScholarPubMed
Rehkopf, D. H., Glymour, M. M., & Osypuk, T. L. (2016). The consistency assumption for causal inference in social epidemiology: When a rose is not a rose. Current Epidemiology Reports, 3(1), 6371. doi: 10.1007/s40471-016-0069-5CrossRefGoogle Scholar
Robinaugh, D. J., Hoekstra, R. H. A., Toner, E. R., & Borsboom, D. (2020). The network approach to psychopathology: A review of the literature 2008–2018 and an agenda for future research. Psychological Medicine, 50(3), 353366. doi: 10.1017/S0033291719003404CrossRefGoogle Scholar
Schiepek, G., & Tschacher, W. (1992). Application of synergetics to clinical psychology. In Tschacher, W., Schiepek, G., & Brunner, E. J. (Eds.), Self-organization and clinical psychology: Empirical approaches to synergetics in psychology (pp. 331). Berlin, Heidelberg: Springer Berlin Heidelberg.CrossRefGoogle Scholar
Schwartz, S., Gatto, N. M., & Campbell, U. B. (2012). Extending the sufficient component cause model to describe the stable unit treatment value assumption (SUTVA). Epidemiologic Perspectives & Innovations, 9(1), 3. doi: 10.1186/1742-5573-9-3CrossRefGoogle ScholarPubMed
Schwartz, S., Gatto, N. M., & Campbell, U. B. (2016). Causal identification: A charge of epidemiology in danger of marginalization. Annals of Epidemiology, 26(10), 669673. doi: 10.1016/j.annepidem.2016.03.013CrossRefGoogle ScholarPubMed
Steinley, D., Hoffman, M., Brusco, M. J., & Sher, K. J. (2017). A method for making inferences in network analysis: Comment on Forbes, Wright, Markon, and Krueger (2017). Journal of Abnormal Psychology, 126(7), 10001010. doi: 10.1037/abn0000308CrossRefGoogle ScholarPubMed
Teasdale, J. D. (1983). Negative thinking in depression: Cause, effect, or reciprocal relationship? Advances in Behaviour Research and Therapy, 5(1), 325.CrossRefGoogle Scholar
van Borkulo, C., Boschloo, L., Borsboom, D., Penninx, B. W. J. H., Waldorp, L. J., & Schoevers, R. A. (2015). Association of symptom network structure with the course of depression. JAMA Psychiatry, 72(12), 12191226. doi: 10.1001/jamapsychiatry.2015.2079CrossRefGoogle Scholar
VanderWeele, T. J. (2009). Concerning the consistency assumption in causal inference. Epidemiology, 20(6), 880883. 10.1097/EDE.0b013e3181bd5638.CrossRefGoogle ScholarPubMed
VanderWeele, T. J. (2019). Principles of confounder selection. European Journal of Epidemiology, 34(3), 211219. doi: 10.1007/s10654-019-00494-6CrossRefGoogle ScholarPubMed
VanderWeele, T. J., & An, W. (2013). Social networks and causal inference. In Morgan, Stephen L (Ed.), Handbook of causal analysis for social research (pp. 353374). Netherlands: Springer.CrossRefGoogle Scholar
Wells, J. E., & Horwood, L. J. (2004). How accurate is recall of key symptoms of depression? A comparison of recall and longitudinal reports. Psychological Medicine, 34(6), 10011011. doi: 10.1017/s0033291703001843CrossRefGoogle ScholarPubMed
Wichers, M. (2014). The dynamic nature of depression: A new micro-level perspective of mental disorder that meets current challenges. Psychological Medicine, 44(7), 13491360. doi: 10.1017/s0033291713001979CrossRefGoogle ScholarPubMed
Wichers, M., Riese, H., Hodges, T. M., Snippe, E., & Bos, F. M. (2021). A narrative review of network studies in depression: What different methodological approaches tell us about depression. Frontiers in Psychiatry, 12, 719490. doi: 10.3389/fpsyt.2021.719490CrossRefGoogle Scholar
Supplementary material: File

Huang et al. supplementary material

Huang et al. supplementary material 1

Download Huang et al. supplementary material(File)
File 18.8 KB
Supplementary material: File

Huang et al. supplementary material

Huang et al. supplementary material 2

Download Huang et al. supplementary material(File)
File 14 KB