Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-26T01:47:04.341Z Has data issue: false hasContentIssue false

A controlled study of 99mTc-HMPAO single-photon emission imaging in chronic schizophrenia

Published online by Cambridge University Press:  09 July 2009

S. W. Lewis*
Affiliation:
Department of Psychiatry, Charing Cross and Westminster Medical School; Springfield Hospital; Departments of Nuclear Medicine and Psychiatry, King's College Hospital; Department of Psychiatry, Maudsley Hospital, London
R. A. Ford
Affiliation:
Department of Psychiatry, Charing Cross and Westminster Medical School; Springfield Hospital; Departments of Nuclear Medicine and Psychiatry, King's College Hospital; Department of Psychiatry, Maudsley Hospital, London
G. M. Syed
Affiliation:
Department of Psychiatry, Charing Cross and Westminster Medical School; Springfield Hospital; Departments of Nuclear Medicine and Psychiatry, King's College Hospital; Department of Psychiatry, Maudsley Hospital, London
A. M. Reveley
Affiliation:
Department of Psychiatry, Charing Cross and Westminster Medical School; Springfield Hospital; Departments of Nuclear Medicine and Psychiatry, King's College Hospital; Department of Psychiatry, Maudsley Hospital, London
B. K. Toone
Affiliation:
Department of Psychiatry, Charing Cross and Westminster Medical School; Springfield Hospital; Departments of Nuclear Medicine and Psychiatry, King's College Hospital; Department of Psychiatry, Maudsley Hospital, London
*
1 Address for correspondence: Dr S. W. Lewis, Department of Psychiatry, Charing Cross and Westminster Medical School, London W6 8RP.

Synopsis

Regional cerebral blood flow (rCBF) during a word fluency task was compared in twenty-five male, right-handed, medicated schizophrenic patients and twenty-five age-matched male, right-handed healthy volunteers, using 99mtechnetium-HMPAO multidetector single-photon emission tomography. Increased rCBF in caudate and thalamus was found in patients, probably secondary to neuroleptic medication. Patients showed decreased rCBF in left frontal cortical regions and increased rCBF in left posterior cortical regions, compared to controls. Patterns of left-sided frontal rCBF dominance in controls were reversed in patients, as were normal patterns of right-sided parietal rCBF dominance. Negative symptom score correlated inversely with mesial frontal rCBF, particularly on the left.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Referemces

Allen, H., Frith, C. & Liddle, P. (1990). Mechanisms underlying abnormalities in verbal fluency in schizophrenia. Schizophrenia Research 3, 6768.CrossRefGoogle Scholar
Annett, M. (1970). The classification of hand preference by association analysis. British Journal of Psychology 6, 278296.Google Scholar
Bajc, M., Medved, V., Basic, M., Topuzpvic, N. & Babic, D. (1989). Cerebal perfusion inhomogeneities in schizophrenia demonstrated with single photon emission computed tomography and Tc99m-HMPAO. Acta Psychiatrica Scandinavia 80, 427433.CrossRefGoogle Scholar
Benes, F. M. & Bird, E. D. (1986). An analysis of the arrangement of neurons in the cingulate cortex of schizophrenic patients. Archives of General Psychiatry 44, 608616.CrossRefGoogle Scholar
Benton, A. L. (1968). Differential effects of frontal lobe disease. Neuropsychologia 6, 5360.CrossRefGoogle Scholar
Buchsbaum, M. S. & Haier, R. J. (1987). Functional and anatomical brain imaging: impact on schizophrenia research. Schizophrenia Bulletin 13, 115132.CrossRefGoogle ScholarPubMed
Buchsbaum, M. S., Wu, J. C., DeLisi, L. E., Holcomb, H. H., Hazlett, E., Cooper-Langston, K. & Kessler, R. (1987). Positron emission tomography studies of basal ganglia and somato-sensory cortex neuroleptic drug affects: differences between normal controls and schizophrenic patients. Biological Psychiatry 22, 479494.CrossRefGoogle Scholar
Buchsbaum, M. S., Neuchterlein, K. H., Haier, R. J., Wu, J., Sicotte, N., Hazlett, E., Asarnow, R., Hopkin, S. & Guich, S. (1990). Glucose metabolic rate in normals and schizophrenics during the continuous performance test assessed by positron emission tomography. British Journal of Psychiatry 156, 216227.CrossRefGoogle ScholarPubMed
Cleghorn, J. M., Kaplan, R. D., Nahmias, C., Garnett, E. S., Szechtman, H. & Szechtman, B. (1989). Inferior parietal region implicated in neurocognitive impairment in schizophrenia. Archives of General Psychiatry 46, 758759.CrossRefGoogle ScholarPubMed
Damasio, H. & Damasio, A. R. (1989). Lesion Analysis in Neuropsychology. Oxford University Press: New York.Google Scholar
DeLisi, L. E., Holcomb, H. H., Cohen, R. M., Pickar, D., Carpenter, W., Morihisa, J. M., King, A. C., Kessler, R. & Buchsbaum, M. S. (1985). Positron emission tomography in schizophrenic patients with and without neuroleptic medication. Journal of Cerebral Blood Flow and Metabolism 5, 201206.CrossRefGoogle ScholarPubMed
DeLisi, L. E., Buchsbaum, M. S., Holcomb, H. H., Langston, K. C., King, A. C., Kessler, R., Pickar, D., Carpenter, W., Morihisa, J. M., Margolin, R. & Weinberger, D. R. (1989). Increased temporal lobe glucose use in chronic schizophrenic patients. Biological Psychiatry 25, 835851.CrossRefGoogle ScholarPubMed
Early, T. S., Posner, M. I., Reiman, E. M. & Raichle, M. E. (1989). Left striato-pallidal hyperactivity in schizophrenia. 2. Phenomenology and thought disorder. Psychiatric Developments 2, 109121.Google Scholar
Franzen, G. & Ingvar, D. H. (1975). Absence of activation in frontal structures during psychological testing of chronic schizophrenics. Journal of Neurology, Neurosurgery and Psychiatry 38, 10271032.CrossRefGoogle ScholarPubMed
Frith, C. J. & Done, D. J. (1988). Towards a neuropsychology of schizophrenia. British Journal of Psychiatry 153, 437443.Google Scholar
Gruzelier, J., Seymour, K., Wilson, L., Jolley, A. & Hirsch, S. (1988). Impairments on neuropsychological tests of temporohippocampal and frontohippocampal functions and word fluency in remitting schizophrenia and affective disorders. Archives of General Psychiatry 45, 623629.CrossRefGoogle ScholarPubMed
Gruzelier, J., Liddiard, D., Davis, L. & Wilson, L. (1990). Topographical EEG differences between schizophrenic patients and controls during neuropsychological functional activation. International Journal of Psychophysiology 8, 275282.CrossRefGoogle ScholarPubMed
Gur, R. E., Resnick, S. M. & Gur, R. C. (1989). Laterality and frontality of cerebral blood flow and metabolism in schizophrenia: relationship to symptom specificity. Psychiatric Research 27, 325334.CrossRefGoogle ScholarPubMed
Iager, A. C., Kirch, D. G. & Wyatt, T. J. (1985). A negative symptom rating scale. Psychiatry Research 16, 2736.CrossRefGoogle ScholarPubMed
Ingvar, D. H. & Franzen, G. (1974). Distribution of cerebral activity in chronic schizophrenia. Lancet ii, 14841486.CrossRefGoogle Scholar
Jarritt, P. H., Eli, P. J., Myers, M. J., Brown, N. J. & Deacon, J. M. (1979). A new transverse section brain imager for single gamma emitters. Journal of Nuclear Medicine 20, 319327.Google ScholarPubMed
Kolb, B. & Whishaw, I. Q. (1983). Performance of schizophrenic patients on tests sensitive to left or right frontal, temporal, or parietal function in neurological patients. Journal of Nervous and Mental Disease 171, 435443.CrossRefGoogle ScholarPubMed
Kolb, B. & Whishaw, I. Q. (1987). Fundamentals of Human Neuropsychology. W. H. Freeman: New York.Google Scholar
Lassen, N. A., Anderson, R. A., Friberg, H. & Paulson, O. B. (1988). The retention of 99m-Tc HMPAO in the human brain after intracarotid bolus injection: a kinetic analysis. Journal of Cerebral Blood Flow and Metabolism 8, 513522.CrossRefGoogle ScholarPubMed
Levin, S., Yurgelun-Todd, D. & Craft, S. (1989). Contributions of clinical neuropsychology to the study of schizophrenia. Journal of Abnormal Psychology 98, 341356.Google Scholar
Liddle, P. F. (1987). Schizophrenic syndromes, cognitive performance and neurological dysfunction. Psychological Medicine 17, 4957.Google Scholar
Mathew, R. J., Wilson, W. H., Hant, S. R., Robinson, L. & Prakash, R. (1988). Abnormal resting regional cerebral blood flow patterns and their correlates in schizophrenia. Archives of General Psychiatry 45, 542549.Google Scholar
Matsuda, H., Gyobu, T. II, M, et al. (1988). Increased accumulation of n-isopropyl (I123) p-iodo-amphetamine in the left auditory area in a schizophrenic patient with auditory hallucinations. Clinics in Nuclear Medicine 13, 5355.CrossRefGoogle Scholar
Miller, E. (1984). Verbal fluency as a function of a measure of verbal intelligence and in relation to different types of cerebral pathology. British Journal of Clinical Psychology 23, 5357.Google Scholar
Milner, B. (1964). Some effects of frontal lobectomy in man. In The Frontal Granular Cortex and Behaviour (ed. Warren, J. M. and Akert, K.), pp. 313334. McGraw-Hill: New York.Google Scholar
Nelson, H. & O'Connell, A. (1978). Dementia: the estimation of premorbid intelligence using the new Adult Reading Test. Cortex 14, 234244.CrossRefGoogle ScholarPubMed
Resnick, S. M., Gur, R. E., Alavi, A., Gur, R. C. & Reivich, M. (1988). Positron emission tomography and subcortical glucose metabolism in schizophrenia. Psychiatry Research 24, 111.CrossRefGoogle ScholarPubMed
Sharp, F. P., Smith, F. W., Gemmel, H. G., Lyall, D., Evans, N. T. S., Guordanovic, D., Davison, J., Tyrell, D. A., Pickett, R. D. & Neuinckx, R. (1986). Technetium-99m HMPAO stereoisomers as potential agents for imaging regional cerebral blood flow: human volunteer studies. Journal of Nuclear Medicine 27, 171177.Google ScholarPubMed
Sheppard, G., Gruzelier, J., Manchanda, R., Hirsch, S., Wise, R., Frackowiac, R., Jones, B. & Jones, T. (1983). 150-Positron emission tomography scanning in predominantly never treated acute schizophrenics. Lancet ii, 14481452.CrossRefGoogle Scholar
Szechtman, H. N. C., Nahmias, C., Garnett, S., Firnau, G., Brown, G. M., Kaplin, R. D. & Cleghorn, J. M. (1988). Effect of neuroleptics on altered cerebral glucose metabolism in schizophrenia. Archives of General Psychiatry 45, 523532.CrossRefGoogle ScholarPubMed
Toru, M., Watanabe, S., Shibuya, H., Nishikawa, T., Noda, K., Mitsushio, H., Ichikawa, H., Kuramaji, A., Takashima, M., Mataga, N. & Ogawa, A. (1988). Neurotransmitters, receptors and neuropeptides in post-mortem brains of chronic schizophrenic patients. Acta Psychiatrica Scandinavica 78, 121127.CrossRefGoogle ScholarPubMed
Volkow, N. D., Brodie, J. D., Wolf, A. P., Angrist, B., Russell, J. & Cancrow, R. (1986). Brain metabolism in patients with schizophrenia before and after acute neuroleptic administration. Journal of Neurology, Neurosurgery and Psychiatry 49, 11991202.CrossRefGoogle ScholarPubMed
Weinberger, R., Berman, K. F. & Zec, R. F. (1986). Physiological function of dorsal lateral pre frontal cortex in schizophrenia. 1. Regional cerebral blood flow evidence. Archives of General Psychiatry 43, 114125.CrossRefGoogle Scholar
Wing, J. K., Cooper, J. E. & Sartorius, N. (1974). The Description of Psychiatric Symptoms: An Introductory Manual for PSE Cambridge University Press: Cambridge.Google Scholar
Wolkin, A., Jaeger, J., Brodie, J. D., Wolf, A. P., Fowler, J., Rotrosen, J., Gomez-Mont, F. & Cancro, R. (1985). Persistence of cerebral metabolic abnormalities in chronic schizophrenia as determined by positron emission tomography. American Journal of Psychiatry 142, 564571.Google ScholarPubMed