Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-09T06:48:13.577Z Has data issue: false hasContentIssue false

The BDNF Val66Met polymorphism impacts parahippocampal and amygdala volume in healthy humans: incremental support for a genetic risk factor for depression

Published online by Cambridge University Press:  01 April 2009

C. Montag*
Affiliation:
Department of Psychology, Laboratory of Neurogenetics, University of Bonn, Germany
B. Weber
Affiliation:
Department of Epileptology, University Hospital of Bonn, Germany Department for NeuroCognition, Life and Brain Centre, Bonn, Germany
K. Fliessbach
Affiliation:
Department of Epileptology, University Hospital of Bonn, Germany Department for NeuroCognition, Life and Brain Centre, Bonn, Germany
C. Elger
Affiliation:
Department of Epileptology, University Hospital of Bonn, Germany Department for NeuroCognition, Life and Brain Centre, Bonn, Germany
M. Reuter
Affiliation:
Department of Psychology, Laboratory of Neurogenetics, University of Bonn, Germany
*
*Address for correspondence: Dr C. Montag, University of Bonn, Department of Psychology, Kaiser-Karl-Ring 9, D-53111 Bonn, Germany. (Email: [email protected])

Abstract

Background

The role of the brain-derived neurotrophic factor (BDNF) in the pathogenesis of affective disorders such as depression has been controversial. Mounting evidence comes from structural imaging, that the functional BDNF Val66Met polymorphism influences the hippocampal volume with carriers of the 66Met allele (Val/Met and Met/Met group) having smaller hippocampi. Given that stress-induced atrophy of the hippocampus is associated with the pathogenesis of affective disorders, the functional BDNF Val66Met polymorphism could be an incremental risk factor.

Method

Eighty-seven healthy Caucasian participants underwent structural imaging and were genotyped for the BDNF Val66Met polymorphism. Data were analysed by means of voxel-based morphometry (VBM).

Results

Region of interest (ROI) analyses revealed an association between the 66Met allele and smaller parahippocampal volumes and a smaller right amygdala. In addition, the whole-brain analysis showed that the thalamus, fusiformus gyrus and several parts of the frontal gyrus were smaller in 66Met allele carriers.

Conclusions

This study demonstrates that the impact of the BDNF Val66Met polymorphism is not confined to the hippocampus but also extends to the parahippocampal gyrus and the amygdala.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andreescu, C, Butters, MA, Begley, A, Rajji, T, Wu, M, Meltzer, CC, Reynolds, CF (2008). Gray matter changes in late life depression – a structural MRI analysis. Neuropsychopharmacology 33, 25662572.CrossRefGoogle ScholarPubMed
Axelson, DA, Doraiswamy, PM, McDonald, WM, Boyko, OB, Tupler, LA, Patterson, LJ, Nemeroff, CB, Ellinwood, EH Jr., Krishnan, KR (1993). Hypercortisolemia and hippocampal changes in depression. Psychiatry Research 47, 163173.CrossRefGoogle ScholarPubMed
Bird, CM, Burgess, N (2008). The hippocampus and memory: insights from spatial processing. Nature Reviews Neuroscience 9, 182194.CrossRefGoogle ScholarPubMed
Boomsma, DI, Willemsen, G, Sullivan, PF, Heutink, P, Meijer, P, Sondervan, D, Kluft, C, Smit, G, Nolen, WA, Zitman, FG, Smit, JH, Hoogendijk, WJ, van Dyck, R, de Geus, EJ, Penninx, BW (2008). Genome-wide association of major depression: description of samples for the GAIN Major Depressive Disorder Study: NTR and NESDA biobank projects. European Journal of Human Genetics 16, 335342.Google Scholar
Bueller, JA, Aftab, M, Sen, S, Gomez-Hassan, D, Burmeister, M, Zubieta, JK (2006). BDNF Val66Met allele is associated with reduced hippocampal volume in healthy subjects. Biological Psychiatry 59, 812815.CrossRefGoogle ScholarPubMed
Canli, T, Lesch, KP (2007). Long story short: the serotonin transporter in emotion regulation and social cognition. Nature Neuroscience 10, 11031109.CrossRefGoogle ScholarPubMed
Chen, ZY, Jing, D, Bath, KG, Ieraci, A, Khan, T, Siao, CJ, Herrera, DG, Toth, M, Yang, C, McEwen, BS, Hempstead, BL, Lee, FS (2006). Genetic variant BDNF (Val66Met) polymorphism alters anxiety-related behavior. Science 214, 140143.CrossRefGoogle Scholar
Chhatwal, JP, Stanek-Rattiner, L, Davis, M, Ressler, KJ (2006). Amygdala BDNF signaling is required for consolidation but not encoding of extinction. Nature Neuroscience 9, 870872.CrossRefGoogle Scholar
Cloninger, CR, Svrakic, DM, Przybeck, TR (1993). A psychobiological model of temperament and character. Archives of General Psychiatry 50, 975990.CrossRefGoogle ScholarPubMed
Dwivedi, Y, Rizavi, HS, Conley, RR, Roberts, RC, Tamminga, CA, Pandey, GN (2003). Altered gene expression of brain-derived neurotrophic factor and receptor tyrosine kinase B in postmortem brain of suicide subjects. Archives of General Psychiatry 60, 804815.CrossRefGoogle ScholarPubMed
Egan, MF, Kojima, M, Callicott, JH, Goldberg, TE, Kolachana, BS, Bertolino, A, Zaitsev, E, Gold, B, Goldman, D, Dean, M, Lu, B, Weinberger, DR (2003). The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell 112, 257269.Google Scholar
Frodl, T, Meisenzahl, EM, Zetzsche, T, Born, C, Groll, C, Jäger, M, Leinsinger, G, Bottlender, R, Hahn, K, Möller, HJ (2002). Hippocampal changes in patients with a first episode of major depression. American Journal of Psychiatry 159, 11121118.CrossRefGoogle ScholarPubMed
Geuze, E, Vermetten, E, Bremner, JD (2005). MR-based in vivo hippocampal volumetrics: 2. Findings in neuropsychiatric disorders. Molecular Psychiatry 10, 160184.CrossRefGoogle ScholarPubMed
Gray, J, McNaughton, N (2000). The Neuropsychology of Anxiety. Oxford University Press: Oxford.Google Scholar
Groves, JO (2007). Is it time to reassess the BDNF hypothesis of depression? Molecular Psychiatry 12, 10791088.CrossRefGoogle ScholarPubMed
Hájek, T, Kopecek, M, Preiss, M, Alda, M, Höschl, C (2006). Prospective study of hippocampal volume and function in human subjects treated with corticosteroids. European Psychiatry 21, 123128.CrossRefGoogle ScholarPubMed
Halfin, A (2007). Depression: the benefits of early and appropriate treatment. American Journal of Management Care 13, 9297.Google ScholarPubMed
Hamilton, JP, Siemer, M, Gotlib, IH (2008). Amygdala volume in major depressive disorder: a meta-analysis of magnetic resonance imaging studies. Molecular Psychiatry 13, 993–1000.CrossRefGoogle ScholarPubMed
Ho, BC, Milev, P, O'Leary, DS, Librant, A, Andreasen, NC, Wassink, TH (2006). Cognitive and magnetic resonance imaging brain morphometric correlates of brain-derived neurotrophic factor Val66Met gene polymorphism in patients with schizophrenia and healthy volunteers. Archives of General Psychiatry 63, 731740.CrossRefGoogle ScholarPubMed
Hoffman, DL, Dukes, EM, Wittchen, HU (2008). Human and economic burden of generalized anxiety disorder. Depression and Anxiety 25, 7290.CrossRefGoogle ScholarPubMed
Höschl, C, Hajek, T (2001). Hippocampal damage mediated by corticosteroids – a neuropsychiatric research challenge. European Archives of Psychiatry and Clinical Neuroscience 251, 8188.CrossRefGoogle ScholarPubMed
Iidaka, T, Matsumoto, A, Ozaki, N, Suzuki, T, Iwata, N, Yamamoto, Y, Okada, T, Sadato, N (2006). Volume of left amygdala subregion predicted temperamental trait of harm avoidance in female young subjects. A voxel-based morphometry study. Brain Research 1125, 8593.CrossRefGoogle ScholarPubMed
Jardine, R, Martin, NG, Henderson, AS (1984). Genetic covariation between neuroticism and the symptoms of anxiety and depression. Genetic Epidemiology 1, 89–107.Google Scholar
Jiang, X, Xu, K, Hoberman, J, Tian, F, Marko, AJ, Waheed, JF, Harris, CR, Marini, AM, Enoch, MA, Lipsky, RH (2005). BDNF variation and mood disorders: a novel functional promoter polymorphism and Val66Met are associated with anxiety but have opposing effects. Neuropsychopharmacology 30, 13531361.Google Scholar
Karege, F, Perret, G, Bondolfi, G, Schwald, M, Bertschy, G, Aubry, JM (2002). Decreased serum brain-derived neurotrophic factor levels in major depressed patients. Psychiatry Research 109, 143148.CrossRefGoogle ScholarPubMed
Kendler, KS, Gardner, CO, Gatz, M, Pedersen, NL (2007). The sources of co-morbidity between major depression and generalized anxiety disorder in a Swedish national twin sample. Psychological Medicine 37, 453462.CrossRefGoogle Scholar
Kumamaru, E, Numakawa, T, Adachi, N, Yagasaki, Y, Izumi, A, Niyaz, M, Kudo, M, Kunugi, H (2008). Glucocorticoid prevents brain-derived neurotrophic factor-mediated maturation of synaptic function in developing hippocampal neurons through reduction in the activity of mitogen-activated protein kinase. Molecular Endocrinology 22, 546558.CrossRefGoogle ScholarPubMed
Lang, UE, Sander, T, Lohoff, FW, Hellweg, R, Bajbouj, M, Winterer, G, Gallinat, J (2007). Association of the met66 allele of brain-derived neurotrophic factor (BDNF) with smoking. Psychopharmacology (Berlin) 190, 433439.CrossRefGoogle ScholarPubMed
Lu, B, Pang, PT, Woo, NH (2005). The yin and yang of neurotrophin action. Nature Reviews Neuroscience 6, 603614.Google Scholar
Maldjian, JA, Laurienti, PJ, Kraft, RA, Burdette, JH (2003). An automated method for neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI data sets. NeuroImage 19, 12331239.CrossRefGoogle ScholarPubMed
Martinowitch, K, Husseini, M, Bai, L (2007). New insights into BDNF function in depression and anxiety. Nature Neuroscience 10, 10891093.Google Scholar
Möller, HJ, Laux, G, Deister, A (2005). Psychiatry and Psychotherapy, 3rd edn [in German]. Georg Thieme Verlag: Stuttgart.Google Scholar
Montag, C, Basten, U, Stelzel, C, Fiebach, CJ, Reuter, M (2008 b). The BDNF Val66Met polymorphism and smoking. Neuroscience Letters 442, 3033.CrossRefGoogle ScholarPubMed
Montag, C, Fiebach, C, Basten, U, Stelzel, C, Reuter, M (in press). The BDNF Val66Met polymorphism and anxiety: support for animal knock-in-studies from a genetic association study in humans. Psychiatry Research.Google Scholar
Montag, C, Reuter, M, Newport, B, Elger, C, Weber, B (2008 a). The BDNF Val66Met polymorphism affects amygdala activity in response to emotional stimuli: evidence from a genetic imaging study. Neuroimage 42, 15541559.CrossRefGoogle ScholarPubMed
Nes, RB, Røysamb, E, Reichborn-Kjennerud, T, Harris, JR, Tambs, K (2007). Symptoms of anxiety and depression in young adults: genetic and environmental influences on stability and change. Twin Research and Human Genetics 10, 450461.CrossRefGoogle ScholarPubMed
Neumeister, A, Wood, S, Bonne, O, Nugent, AC, Luckenbaugh, DA, Young, T, Bain, EE, Charney, DS, Drevets, WC (2005). Reduced hippocampal volume in unmedicated, remitted patients with major depression versus control subjects. Biological Psychiatry 57, 935937.Google Scholar
Pezawas, L, Meyer-Lindenberg, A, Goldman, AL, Verchinski, BA, Chen, G, Kolachana, BS, Egan, MF, Mattay, MF, Hariri, AR, Weinberger, DR (2008). Evidence of biologic epistasis between BDNF and SLC6A4 and implications for depression. Molecular Psychiatry 13, 709716.Google Scholar
Pezawas, L, Verchinski, BA, Mattay, VS, Callicott, JH, Kolachana, BS, Straub, RE, Egan, MF, Meyer-Lindenberg, A, Weinberger, DR (2004). The brain-derived neurotrophic factor val66met polymorphism and variation in human cortical morphology. Journal of Neuroscience 10, 1009910102.Google Scholar
Rattiner, LM, Davis, M, French, CT, Ressler, KJ (2004). Brain-derived neurotrophic factor and tyrosine kinase receptor B involvement in amygdala-dependent fear conditioning. Journal of Neuroscience 24, 47964806.Google Scholar
Reimold, M, Slifstein, M, Heinz, A, Müller-Schauenburg, W, Bares, R (2006). Effect of spatial smoothing on t-maps: arguments for going back from t-maps to masked contrast images. Journal of Cerebral Blood Flow and Metabolism 26, 751759.CrossRefGoogle ScholarPubMed
Rusch, BD, Abercrombie, HC, Oakes, TR, Schaefer, SM, Davidson, RJ (2001). Hippocampal morphometry in depressed patients and control subjects: relations to anxiety symptoms. Biological Psychiatry 50, 960964.CrossRefGoogle ScholarPubMed
Sapolsky, RM (2001). Depression, antidepressants, and the shrinking hippocampus. Proceedings of the National Academy of Sciences USA 98, 1232012322.CrossRefGoogle ScholarPubMed
Sheline, YI, Gado, MH, Kraemer, HC (2003). Untreated depression and hippocampal volume loss. American Journal of Psychiatry 160, 15161518.Google Scholar
Sheline, YI, Wang, PW, Gado, MH, Csernansky, JG, Vannier, MW (1996). Hippocampal atrophy in recurrent major depression. Proceedings of the National Academy of Sciences USA 93, 39083913.CrossRefGoogle ScholarPubMed
Shifman, S, Bhomra, A, Smiley, S, Wray, NR, James, MR, Martin, NG, Hettema, JM, An, SS, Neale, MC, van den Oord, EJCG, Kendler, KS, Chen, X, Boomsma, DI, Middeldorp, CM, Hottenga, JJ, Slagboom, PE and Flint, J (2008). A whole genome association study of neuroticism using DNA pooling. Molecular Psychiatry 13, 302312.CrossRefGoogle ScholarPubMed
Siegle, GJ, Konecky, RO, Thase, ME, Carter, CS (2003). Relationships between amygdala volume and activity during emotional information processing tasks in depressed and never-depressed individuals: an fMRI investigation. Annals of the New York Academy of Sciences 985, 481484.Google Scholar
Sublette, ME, Baca-Garcia, E, Parsey, RV, Oquendo, MA, Rodrigues, SM, Galfalvy, H, Huang, YY, Arango, V, Mann, JJ (2008). Effect of BDNF val66met polymorphism on age-related amygdala volume changes in healthy subjects. Progress in Neuropsychopharmacology and Biological Psychiatry 32, 16521655.CrossRefGoogle ScholarPubMed
Szeszko, PR, Lipsky, R, Mentschel, C, Robinson, D, Gunduz-Bruce, H, Sevy, S, Ashtari, M, Napolitano, B, Bilder, RM, Kane, JM, Goldman, D, Malhotra, AK (2005). Brain-derived neurotrophic factor val66met polymorphism and volume of the hippocampal formation. Molecular Psychiatry 10, 631636.CrossRefGoogle ScholarPubMed
Takahashi, T, Suzuki, M, Tsunoda, M, Kawamura, Y, Takahashi, N, Tsuneki, H, Kawasaki, Y, Zhou, SY, Kobayashi, S, Sasaoka, T, Seto, H, Kurachi, M, Ozaki, N (2008). Association between the brain-derived neurotrophic factor Val66Met polymorphism and brain morphology in a Japanese sample of schizophrenia and healthy comparisons. Neuroscience Letters 435, 3439.CrossRefGoogle Scholar
Tapia-Arancibia, L, Aliaga, E, Silhol, M, Arancibia, S (2008). New insights into brain BDNF function in normal aging and Alzheimer disease. Brain Research Reviews 59, 201220.Google Scholar
Tessner, KD, Walker, EF, Dhruv, SH, Hochman, K, Hamann, S (2007). The relation of cortisol levels with hippocampus volumes under baseline and challenge conditions. Brain Research 1179, 707708.CrossRefGoogle ScholarPubMed
Verhagen, M, van der Meij, A, van Deurzen, PA, Janzing, JG, Arias-Vásquez, A, Buitelaar, JK, Franke, B (in press). Meta-analysis of the BDNF Val66Met polymorphism in major depressive disorder: effects of gender and ethnicity. Molecular Psychiatry.Google Scholar
Yamasue, H, Abe, O, Suga, M, Yamada, H, Inoue, H, Tochigi, M, Rogers, M, Aoki, S, Kato, N, Kasai, K (2008). Gender-common and -specific neuroanatomical basis of human anxiety-related personality traits. Cerebral Cortex 8, 4652.Google Scholar
Yang, HJ, Chiu, YJ, Soong, WT, Chen, WJ (2008). The roles of personality traits and negative life events on the episodes of depressive symptoms in nonreferred adolescents: a 1-year follow-up study. Journal of Adolescent Health 42, 378385.CrossRefGoogle ScholarPubMed
Yoshikawa, E, Matsuoka, Y, Yamasue, H, Inagaki, M, Nakano, T, Akechi, T, Kobayakawa, M, Fujimori, M, Nakaya, N, Akizuki, N, Imoto, S, Murakami, K, Kasai, K, Uchitomi, Y (2006). Prefrontal cortex and amygdala volume in first minor or major depressive episode after cancer diagnosis. Biological Psychiatry 59, 707712.CrossRefGoogle ScholarPubMed