Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-28T10:34:14.512Z Has data issue: false hasContentIssue false

Altered neural activities during response inhibition in adults with addiction: a voxel-wise meta-analysis

Published online by Cambridge University Press:  22 February 2021

Zeguo Qiu
Affiliation:
Department of Applied Psychology, Guangdong University of Foreign Studies, Guangzhou510006, China School of Psychology, The University of Queensland, Brisbane4072, Australia
Junjing Wang*
Affiliation:
Department of Applied Psychology, Guangdong University of Foreign Studies, Guangzhou510006, China
*
Author for correspondence: Junjing Wang, E-mail: [email protected]

Abstract

Background

Previous literature has extensively investigated the brain activity during response inhibition in adults with addiction. Inconsistent results including both hyper- and hypo-activities in the fronto-parietal network (FPN) and the ventral attention network (VAN) have been found in adults with addictions, compared with healthy controls (HCs).

Methods

Voxel-wise meta-analyses of abnormal task-evoked regional activity were conducted for adults with substance dependence (SD) and behavioral addiction during response inhibition tasks to solve previous inconsistencies. Twenty-three functional magnetic resonance imaging studies including 479 substance users, 38 individuals with behavioral addiction and 494 HCs were identified.

Results

Compared with HCs, all addictions showed hypo-activities in regions within FPN (inferior frontal gyrus and supramarginal gyrus) and VAN (inferior frontal gyrus, middle temporal gyrus, temporal pole and insula), and hyper-activities in the cerebellum during response inhibition. SD subgroup showed almost the same activity patterns, with an additional hypoactivation of the precentral gyrus, compared with HCs. Stronger activation of the cerebellum was associated with longer addiction duration for adults with SD. We could not conduct meta-analytic investigations into the behavioral addiction subgroup due to the small number of datasets.

Conclusion

This meta-analysis revealed altered activation of FPN, VAN and the cerebellum in adults with addiction during response inhibition tasks using non-addiction-related stimuli. Although FPN and VAN showed lower activity, the cerebellum exhibited stronger activity. These results may help to understand the neural pathology of response inhibition in addiction.

Type
Review Article
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Zeguo Qiu and Junjing Wang contributed equally to this study.

References

American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders (DSM-5®). Arlington, VA: Author.Google Scholar
Argyriou, E., Davison, C. B., & Lee, T. T. (2017). Response inhibition and internet gaming disorder: A meta-analysis. Addictive Behaviors, 71, 5460.CrossRefGoogle ScholarPubMed
Aron, A. R., Fletcher, P. C., Bullmore, E. T., Sahakian, B. J., & Robbins, T. W. (2003). Stop-signal inhibition disrupted by damage to right inferior frontal gyrus in humans. Nature Neuroscience, 6(2), 115116.CrossRefGoogle ScholarPubMed
Asplund, C. L., Todd, J. J., Snyder, A. P., & Marois, R. (2010). A central role for the lateral prefrontal cortex in goal-directed and stimulus-driven attention. Nature Neuroscience, 13(4), 507512.CrossRefGoogle ScholarPubMed
Azevedo, C. A., & Mammis, A. (2018). Neuromodulation therapies for alcohol addiction: A literature review. Neuromodulation: Technology at the Neural Interface, 21(2), 144148.CrossRefGoogle ScholarPubMed
Barrós-Loscertales, A., Bustamante, J.-C., Ventura-Campos, N., Llopis, J.-J., Parcet, M.-A., & Ávila, C. (2011). Lower activation in the right frontoparietal network during a counting Stroop task in a cocaine-dependent group. Psychiatry Research: Neuroimaging, 194(2), 111118.CrossRefGoogle Scholar
Bell, R. P., Foxe, J. J., Ross, L. A., & Garavan, H. (2014a). Intact inhibitory control processes in abstinent drug abusers (I): A functional neuroimaging study in former cocaine addicts. Neuropharmacology, 82, 143150.CrossRefGoogle Scholar
Bell, R. P., Garavan, H., & Foxe, J. J. (2014b). Neural correlates of craving and impulsivity in abstinent former cocaine users: Towards biomarkers of relapse risk. Neuropharmacology, 85, 461470.CrossRefGoogle Scholar
Brecht, M.-L., & Herbeck, D. (2014). Time to relapse following treatment for methamphetamine use: A long-term perspective on patterns and predictors. Drug and Alcohol Dependence, 139, 1825.CrossRefGoogle ScholarPubMed
Brewer, J. A., & Potenza, M. N. (2008). The neurobiology and genetics of impulse control disorders: Relationships to drug addictions. Biochemical Pharmacology, 75(1), 6375.CrossRefGoogle ScholarPubMed
Brunamonti, E., Chiricozzi, F. R., Clausi, S., Olivito, G., Giusti, M. A., Molinari, M., … Leggio, M. (2014). Cerebellar damage impairs executive control and monitoring of movement generation. PLoS One, 9(1), e85997.CrossRefGoogle ScholarPubMed
Caldwell, B. M., Harenski, C. L., Harenski, K. A., Fede, S. J., Steele, V. R., Koenigs, M. R., & Kiehl, K. A. (2015). Abnormal frontostriatal activity in recently abstinent cocaine users during implicit moral processing. Frontiers in Human Neuroscience, 9, 565.CrossRefGoogle ScholarPubMed
Campbell, W. G. (2003). Addiction: A disease of volition caused by a cognitive impairment. The Canadian Journal of Psychiatry, 48(10), 669674.CrossRefGoogle ScholarPubMed
Chambers, C. D., Garavan, H., & Bellgrove, M. A. (2009). Insights into the neural basis of response inhibition from cognitive and clinical neuroscience. Neuroscience & Biobehavioral Reviews, 33(5), 631646.CrossRefGoogle ScholarPubMed
Claus, E. D., Feldstein Ewing, S. W., Filbey, F. M., & Hutchison, K. E. (2013). Behavioral control in alcohol use disorders: Relationships with severity. Journal of Studies on Alcohol and Drugs, 74(1), 141151.CrossRefGoogle ScholarPubMed
Costumero, V., Bustamante, J. C., Rosell-Negre, P., Fuentes, P., Llopis, J. J., Ávila, C., & Barrós-Loscertales, A. (2017). Reduced activity in functional networks during reward processing is modulated by abstinence in cocaine addicts. Addiction Biology, 22(2), 479489.CrossRefGoogle ScholarPubMed
Criaud, M., & Boulinguez, P. (2013). Have we been asking the right questions when assessing response inhibition in go/no-go tasks with fMRI? A meta-analysis and critical review. Neuroscience & Biobehavioral Reviews, 37(1), 1123.CrossRefGoogle ScholarPubMed
Czapla, M., Baeuchl, C., Simon, J. J., Richter, B., Kluge, M., Friederich, H.-C., … Loeber, S. (2017). Do alcohol-dependent patients show different neural activation during response inhibition than healthy controls in an alcohol-related fMRI go/no-go-task? Psychopharmacology, 234(6), 10011015.CrossRefGoogle Scholar
Degenhardt, L., Charlson, F., Ferrari, A., Santomauro, D., Erskine, H., Mantilla-Herrara, A., … Griswold, M. (2018). The global burden of disease attributable to alcohol and drug use in 195 countries and territories, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. The Lancet Psychiatry, 5(12), 9871012.CrossRefGoogle Scholar
De Ruiter, M. B., Oosterlaan, J., Veltman, D. J., Van Den Brink, W., & Goudriaan, A. E. (2012). Similar hyporesponsiveness of the dorsomedial prefrontal cortex in problem gamblers and heavy smokers during an inhibitory control task. Drug and Alcohol Dependence, 121(1–2), 8189.CrossRefGoogle ScholarPubMed
Desmond, J. E., Chen, S. A., DeRosa, E., Pryor, M. R., Pfefferbaum, A., & Sullivan, E. V. (2003). Increased frontocerebellar activation in alcoholics during verbal working memory: An fMRI study. NeuroImage, 19(4), 15101520.CrossRefGoogle ScholarPubMed
Ding, W.-N., Sun, J.-H., Sun, Y.-W., Chen, X., Zhou, Y., Zhuang, Z.-G., … Du, Y.-S. (2014). Trait impulsivity and impaired prefrontal impulse inhibition function in adolescents with internet gaming addiction revealed by a Go/No-Go fMRI study. Behavioral and Brain Functions, 10(1), 20.CrossRefGoogle ScholarPubMed
Dodds, C. M., Morein-Zamir, S., & Robbins, T. W. (2011). Dissociating inhibition, attention, and response control in the frontoparietal network using functional magnetic resonance imaging. Cerebral Cortex, 21(5), 11551165.CrossRefGoogle ScholarPubMed
Donders, F. C. (1969). On the speed of mental processes. Acta Psychologica, 30, 412431.CrossRefGoogle ScholarPubMed
Dong, G., DeVito, E. E., Du, X., & Cui, Z. (2012). Impaired inhibitory control in ‘internet addiction disorder’: A functional magnetic resonance imaging study. Psychiatry Research: Neuroimaging, 203(2–3), 153158.CrossRefGoogle ScholarPubMed
Dong, G., Shen, Y., Huang, J., & Du, X. (2013). Impaired error-monitoring function in people with internet addiction disorder: An event-related fMRI study. European Addiction Research, 19(5), 269275.CrossRefGoogle Scholar
Evren, C., Evren, B., Dalbudak, E., Topcu, M., & Kutlu, N. (2020). Relationship of internet gaming disorder symptom severity with non-suicidal self-injury among young adults. Neurological Sciences, 33, 7986.Google Scholar
Fineberg, N. A., Chamberlain, S. R., Goudriaan, A. E., Stein, D. J., Vanderschuren, L. J., Gillan, C. M., … Morein-Zamir, S. (2014). New developments in human neurocognition: Clinical, genetic and brain imaging correlates of impulsivity and compulsivity. CNS Spectrums, 19(1), 69.CrossRefGoogle ScholarPubMed
Fu, L.-P., Bi, G.-H., Zou, Z.-T., Wang, Y., Ye, E.-M., Ma, L., & Yang, Z. (2008). Impaired response inhibition function in abstinent heroin dependents: An fMRI study. Neuroscience Letters, 438(3), 322326.CrossRefGoogle ScholarPubMed
Goldstein, R. Z., & Volkow, N. D. (2011). Dysfunction of the prefrontal cortex in addiction: Neuroimaging findings and clinical implications. Nature Reviews Neuroscience, 12(11), 652669.CrossRefGoogle ScholarPubMed
Hampshire, A., & Sharp, D. J. (2015). Contrasting network and modular perspectives on inhibitory control. Trends in Cognitive Sciences, 19(8), 445452.CrossRefGoogle ScholarPubMed
Hendrick, O. M., Luo, X., Zhang, S., & Li, C. S. R. (2012). Saliency processing and obesity: A preliminary imaging study of the stop signal task. Obesity, 20(9), 17961802.CrossRefGoogle ScholarPubMed
Hester, R., & Garavan, H. (2004). Executive dysfunction in cocaine addiction: Evidence for discordant frontal, cingulate, and cerebellar activity. Journal of Neuroscience, 24(49), 1101711022.CrossRefGoogle ScholarPubMed
Hester, R., Nestor, L., & Garavan, H. (2009). Impaired error awareness and anterior cingulate cortex hypoactivity in chronic cannabis users. Neuropsychopharmacology, 34(11), 24502458.CrossRefGoogle ScholarPubMed
Jan, R. K., Lin, J. C., McLaren, D. G., Kirk, I. J., Kydd, R. R., & Russell, B. R. (2014). The effects of methylphenidate on cognitive control in active methamphetamine dependence using functional magnetic resonance imaging. Frontiers in Psychiatry, 5, 20.CrossRefGoogle ScholarPubMed
Jazaeri, S. A., & Habil, M. H. B. (2012). Reviewing two types of addiction–pathological gambling and substance use. Indian Journal of Psychological Medicine, 34(1), 5.CrossRefGoogle ScholarPubMed
Kaptsis, D., King, D. L., Delfabbro, P. H., & Gradisar, M. (2016). Trajectories of abstinence-induced internet gaming withdrawal symptoms: A prospective pilot study. Addictive Behaviors Reports, 4, 2430.CrossRefGoogle ScholarPubMed
Kaufman, J. N., Ross, T. J., Stein, E. A., & Garavan, H. (2003). Cingulate hypoactivity in cocaine users during a GO-NOGO task as revealed by event-related functional magnetic resonance imaging. Journal of Neuroscience, 23(21), 78397843.CrossRefGoogle ScholarPubMed
Kircher, T. T., Brammer, M. J., Levelt, W., Bartels, M., & McGuire, P. K. (2004). Pausing for thought: Engagement of left temporal cortex during pauses in speech. NeuroImage, 21(1), 8490.CrossRefGoogle Scholar
Ko, C.-H., Hsieh, T.-J., Chen, C.-Y., Yen, C.-F., Chen, C.-S., Yen, J.-Y., … Liu, G.-C. (2014). Altered brain activation during response inhibition and error processing in subjects with internet gaming disorder: A functional magnetic imaging study. European Archives of Psychiatry and Clinical Neuroscience, 264(8), 661672.CrossRefGoogle ScholarPubMed
Kober, H., DeVito, E. E., DeLeone, C. M., Carroll, K. M., & Potenza, M. N. (2014). Cannabis abstinence during treatment and one-year follow-up: Relationship to neural activity in men. Neuropsychopharmacology, 39(10), 22882298.CrossRefGoogle ScholarPubMed
Lawrence, A. J., Luty, J., Bogdan, N. A., Sahakian, B. J., & Clark, L. (2009). Impulsivity and response inhibition in alcohol dependence and problem gambling. Psychopharmacology, 207(1), 163172.CrossRefGoogle ScholarPubMed
Leland, D. S., Arce, E., Miller, D. A., & Paulus, M. P. (2008). Anterior cingulate cortex and benefit of predictive cueing on response inhibition in stimulant dependent individuals. Biological Psychiatry, 63(2), 184190.CrossRefGoogle ScholarPubMed
Li, C.-S. R., Huang, C., Yan, P., Bhagwagar, Z., Milivojevic, V., & Sinha, R. (2008). Neural correlates of impulse control during stop signal inhibition in cocaine-dependent men. Neuropsychopharmacology, 33(8), 17981806.CrossRefGoogle ScholarPubMed
Li, C.-S. R., Luo, X., Yan, P., Bergquist, K., & Sinha, R. (2009). Altered impulse control in alcohol dependence: Neural measures of stop signal performance. Alcoholism: Clinical and Experimental Research, 33(4), 740750.CrossRefGoogle ScholarPubMed
Liu, G.-C., Yen, J.-Y., Chen, C.-Y., Yen, C.-F., Chen, C.-S., Lin, W.-C., & Ko, C.-H. (2014). Brain activation for response inhibition under gaming cue distraction in internet gaming disorder. The Kaohsiung Journal of Medical Sciences, 30(1), 4351.CrossRefGoogle ScholarPubMed
Livny, A., Cohen, K., Tik, N., Tsarfaty, G., Rosca, P., & Weinstein, A. (2018). The effects of synthetic cannabinoids (SCs) on brain structure and function. European Neuropsychopharmacology, 28(9), 10471057.CrossRefGoogle ScholarPubMed
Logan, G. (1994). On the ability to inhibit thought and action: A users’ guide to the stop signal paradigm. In Dagenbach, D. & Carr, T. H. (Eds.), Inhibitory processes in attention, memory and language (pp. 189239). San Diego: Academic.Google Scholar
Luijten, M., Machielsen, M. W., Veltman, D. J., Hester, R., de Haan, L., & Franken, I. H. (2014). Systematic review of ERP and fMRI studies investigating inhibitory control and error processing in people with substance dependence and behavioural addictions. Journal of Psychiatry and Neuroscience, 39(3), 149169.CrossRefGoogle ScholarPubMed
Luijten, M., Veltman, D. J., Hester, R., Smits, M., Nijs, I. M., Pepplinkhuizen, L., & Franken, I. H. (2013). The role of dopamine in inhibitory control in smokers and non-smokers: A pharmacological fMRI study. European Neuropsychopharmacology, 23(10), 12471256.CrossRefGoogle ScholarPubMed
Marek, S., & Dosenbach, N. U. (2018). The frontoparietal network: Function, electrophysiology, and importance of individual precision mapping. Dialogues in Clinical Neuroscience, 20(2), 133.Google ScholarPubMed
Meule, A. (2017). Reporting and interpreting task performance in go/no-go affective shifting tasks. Frontiers in Psychology, 8, 701.CrossRefGoogle ScholarPubMed
Miller, N. S., Dackis, C. A., & Gold, M. S. (1987). The relationship of addiction, tolerance, and dependence to alcohol and drugs: A neurochemical approach. Journal of Substance Abuse Treatment, 4(3–4), 197207.CrossRefGoogle ScholarPubMed
Miquel, M., Vazquez-Sanroman, D., Carbo-Gas, M., Gil-Miravet, I., Sanchis-Segura, C., Carulli, D., … Coria-Avila, G. A. (2016). Have we been ignoring the elephant in the room? Seven arguments for considering the cerebellum as part of addiction circuitry. Neuroscience & Biobehavioral Reviews, 60, 111.CrossRefGoogle ScholarPubMed
Moccia, L., Pettorruso, M., De Crescenzo, F., De Risio, L., Di Nuzzo, L., Martinotti, G., … Di Nicola, M. (2017). Neural correlates of cognitive control in gambling disorder: A systematic review of fMRI studies. Neuroscience & Biobehavioral Reviews, 78, 104116.CrossRefGoogle ScholarPubMed
Moeller, S. J., Bederson, L., Alia-Klein, N., & Goldstein, R. Z.. (2016). Neuroscience of inhibition for addiction medicine: From prediction of initiation to prediction of relapse.. Progress in Brain Research, 223, 165188.CrossRefGoogle Scholar
Moeller, S. J., Froböse, M. I., Konova, A. B., Misyrlis, M., Parvaz, M. A., Goldstein, R. Z., & Alia-Klein, N. (2014a). Common and distinct neural correlates of inhibitory dysregulation: Stroop fMRI study of cocaine addiction and intermittent explosive disorder. Journal of Psychiatric Research, 58, 5562.CrossRefGoogle Scholar
Moeller, S. J., Konova, A. B., Parvaz, M. A., Tomasi, D., Lane, R. D., Fort, C., & Goldstein, R. Z. (2014b). Functional, structural, and emotional correlates of impaired insight in cocaine addiction. JAMA Psychiatry, 71(1), 6170.CrossRefGoogle Scholar
Moeller, S. J., Tomasi, D., Woicik, P. A., Maloney, T., Alia-Klein, N., Honorio, J., … Sinha, R. (2012). Enhanced midbrain response at 6-month follow-up in cocaine addiction, association with reduced drug-related choice. Addiction Biology, 17(6), 10131025.CrossRefGoogle ScholarPubMed
Morein-Zamir, S., Jones, P. S., Bullmore, E. T., Robbins, T. W., & Ersche, K. D. (2013). Prefrontal hypoactivity associated with impaired inhibition in stimulant-dependent individuals but evidence for hyperactivation in their unaffected siblings. Neuropsychopharmacology, 38(10), 19451953.CrossRefGoogle ScholarPubMed
Morein-Zamir, S., & Robbins, T. W. (2015). Fronto-striatal circuits in response-inhibition: Relevance to addiction. Brain Research, 1628, 117129.CrossRefGoogle ScholarPubMed
Moulton, E. A., Elman, I., Becerra, L. R., Goldstein, R. Z., & Borsook, D. (2014). The cerebellum and addiction: Insights gained from neuroimaging research. Addiction Biology, 19(3), 317331.CrossRefGoogle ScholarPubMed
Nee, D. E., Wager, T. D., & Jonides, J. (2007). Interference resolution: Insights from a meta-analysis of neuroimaging tasks. Cognitive, Affective, & Behavioral Neuroscience, 7(1), 117.CrossRefGoogle ScholarPubMed
Nestor, L. J., Ghahremani, D. G., Monterosso, J., & London, E. D. (2011b). Prefrontal hypoactivation during cognitive control in early abstinent methamphetamine-dependent subjects. Psychiatry Research: Neuroimaging, 194(3), 287295.CrossRefGoogle Scholar
Nestor, L., McCabe, E., Jones, J., Clancy, L., & Garavan, H. (2011a). Differences in ‘bottom-up’ and ‘top-down’ neural activity in current and former cigarette smokers: Evidence for neural substrates which may promote nicotine abstinence through increased cognitive control. NeuroImage, 56(4), 22582275.CrossRefGoogle Scholar
NIDA. (2019). The neurobiology of drug addiction. Retrieved from https://www.drugabuse.gov/neurobiology-drug-addiction on 2019, December 30.Google Scholar
Nigg, J. T. (2000). On inhibition/disinhibition in developmental psychopathology: Views from cognitive and personality psychology and a working inhibition taxonomy. Psychological Bulletin, 126(2), 220.CrossRefGoogle Scholar
Paulus, M. P., Feinstein, J. S., Leland, D., & Simmons, A. N. (2005). Superior temporal gyrus and insula provide response and outcome-dependent information during assessment and action selection in a decision-making situation. NeuroImage, 25(2), 607615.CrossRefGoogle Scholar
Radua, J., Grau, M., Van Den Heuvel, O. A., De Schotten, M. T., Stein, D. J., Canales-Rodríguez, E. J., … Mataix-Cols, D. (2014a). Multimodal voxel-based meta-analysis of white matter abnormalities in obsessive–compulsive disorder. Neuropsychopharmacology, 39(7), 1547.CrossRefGoogle Scholar
Radua, J., & Mataix-Cols, D. (2009). Voxel-wise meta-analysis of grey matter changes in obsessive–compulsive disorder. The British Journal of Psychiatry, 195(5), 393402.CrossRefGoogle ScholarPubMed
Radua, J., & Mataix-Cols, D. (2012). Meta-analytic methods for neuroimaging data explained. Biology of Mood & Anxiety Disorders, 2(1), 6.CrossRefGoogle ScholarPubMed
Radua, J., Mataix-Cols, D., Phillips, M. L., El-Hage, W., Kronhaus, D., Cardoner, N., & Surguladze, S. (2012). A new meta-analytic method for neuroimaging studies that combines reported peak coordinates and statistical parametric maps. European Psychiatry, 27(8), 605611.CrossRefGoogle ScholarPubMed
Radua, J., Rubia, K., Canales, E. J., Pomarol-Clotet, E., Fusar-Poli, P., & Mataix-Cols, D. (2014b). Anisotropic kernels for coordinate-based meta-analyses of neuroimaging studies. Frontiers in Psychiatry, 5, 13.CrossRefGoogle Scholar
Radua, J., van den Heuvel, O. A., Surguladze, S., & Mataix-Cols, D. (2010). Meta-analytical comparison of voxel-based morphometry studies in obsessive-compulsive disorder vs other anxiety disorders. Archives of General Psychiatry, 67(7), 701711.CrossRefGoogle ScholarPubMed
Rae, C. L., Hughes, L. E., Anderson, M. C., & Rowe, J. B. (2015). The prefrontal cortex achieves inhibitory control by facilitating subcortical motor pathway connectivity. Journal of Neuroscience, 35(2), 786794.CrossRefGoogle ScholarPubMed
Schachar, R., Logan, G. D., Robaey, P., Chen, S., Ickowicz, A., & Barr, C. (2007). Restraint and cancellation: Multiple inhibition deficits in attention deficit hyperactivity disorder. Journal of Abnormal Child Psychology, 35(2), 229238.CrossRefGoogle ScholarPubMed
Schulte, T., Müller-Oehring, E. M., Sullivan, E. V., & Pfefferbaum, A. (2012). Synchrony of corticostriatal-midbrain activation enables normal inhibitory control and conflict processing in recovering alcoholic men. Biological Psychiatry, 71(3), 269278.CrossRefGoogle ScholarPubMed
Shulman, G. L., Astafiev, S. V., Franke, D., Pope, D. L., Snyder, A. Z., McAvoy, M. P., & Corbetta, M. (2009). Interaction of stimulus-driven reorienting and expectation in ventral and dorsal frontoparietal and basal ganglia-cortical networks. Journal of Neuroscience, 29(14), 43924407.CrossRefGoogle ScholarPubMed
Simmonds, D. J., Pekar, J. J., & Mostofsky, S. H. (2008). Meta-analysis of Go/No-go tasks demonstrating that fMRI activation associated with response inhibition is task-dependent. Neuropsychologia, 46(1), 224232.CrossRefGoogle ScholarPubMed
Smith, D., Jones, P., Bullmore, E., Robbins, T., & Ersche, K. (2013). Cognitive control dysfunction and abnormal frontal cortex activation in stimulant drug users and their biological siblings. Translational Psychiatry, 3(5), e257e257.CrossRefGoogle ScholarPubMed
Smith, J. L., Mattick, R. P., Jamadar, S. D., & Iredale, J. M. (2014). Deficits in behavioural inhibition in substance abuse and addiction: A meta-analysis. Drug and Alcohol Dependence, 145, 133.CrossRefGoogle ScholarPubMed
Stahl, C., Voss, A., Schmitz, F., Nuszbaum, M., Tüscher, O., Lieb, K., & Klauer, K. C. (2014). Behavioral components of impulsivity. Journal of Experimental Psychology: General, 143(2), 850.CrossRefGoogle ScholarPubMed
Stroop, J. R. (1935). Studies of interference in serial verbal reactions. Journal of Experimental Psychology, 18(6), 643.CrossRefGoogle Scholar
Stroup, D. F., Berlin, J. A., Morton, S. C., Olkin, I., Williamson, G. D., Rennie, D., … Thacker, S. B. (2000). Meta-analysis of observational studies in epidemiology: A proposal for reporting. JAMA, 283(15), 20082012.CrossRefGoogle Scholar
Tang, S., Lu, L., Zhang, L., Hu, X., Bu, X., Li, H., … Gong, Q. (2018). Abnormal amygdala resting-state functional connectivity in adults and adolescents with major depressive disorder: A comparative meta-analysis. EBioMedicine, 36, 436445.CrossRefGoogle ScholarPubMed
Van Leijenhorst, L., Moor, B. G., de Macks, Z. A. O., Rombouts, S. A., Westenberg, P. M., & Crone, E. A. (2010). Adolescent risky decision-making: Neurocognitive development of reward and control regions. NeuroImage, 51(1), 345355.CrossRefGoogle ScholarPubMed
Vara, A. S., Pang, E. W., Vidal, J., Anagnostou, E., & Taylor, M. J. (2014). Neural mechanisms of inhibitory control continue to mature in adolescence. Developmental Cognitive Neuroscience, 10, 129139.CrossRefGoogle ScholarPubMed
Verbruggen, F., & Logan, G. D. (2008). Response inhibition in the stop-signal paradigm. Trends in Cognitive Sciences, 12(11), 418424.CrossRefGoogle ScholarPubMed
Verdejo-García, A., Lubman, D. I., Schwerk, A., Roffel, K., Vilar-López, R., MacKenzie, T., & Yücel, M. (2012). Effect of craving induction on inhibitory control in opiate dependence. Psychopharmacology, 219(2), 519526.CrossRefGoogle ScholarPubMed
Vossel, S., Geng, J. J., & Fink, G. R. (2014). Dorsal and ventral attention systems: Distinct neural circuits but collaborative roles. The Neuroscientist, 20(2), 150159.CrossRefGoogle ScholarPubMed
Wang, Y., Hu, Y., Xu, J., Zhou, H., Lin, X., Du, X., & Dong, G. (2017). Dysfunctional prefrontal function is associated with impulsivity in people with internet gaming disorder during a delay discounting task. Frontiers in Psychiatry, 8, 287.CrossRefGoogle ScholarPubMed
Weywadt, C. R., Kiehl, K. A., & Claus, E. D. (2017). Neural correlates of response inhibition in current and former smokers. Behavioural Brain Research, 319, 207218.CrossRefGoogle ScholarPubMed
World Health Organization (2019). International Statistical Cassification of Diseases and Related Health Problems (11th ed.). Geneva: Author.Google Scholar
Ye, J. J., Li, W., Zhang, D. S., Li, Q., Zhu, J., Chen, J. J., … Wei, X. (2018). Longitudinal behavioral and fMRI-based assessment of inhibitory control in heroin addicts on methadone maintenance treatment. Experimental and Therapeutic Medicine, 16(4), 32023210.Google ScholarPubMed
Zhang, R., Geng, X., & Lee, T. M. (2017). Large-scale functional neural network correlates of response inhibition: An fMRI meta-analysis. Brain Structure and Function, 222(9), 39733990.CrossRefGoogle ScholarPubMed
Zilverstand, A., Huang, A. S., Alia-Klein, N., & Goldstein, R. Z. (2018). Neuroimaging impaired response inhibition and salience attribution in human drug addiction: A systematic review. Neuron, 98(5), 886903.CrossRefGoogle ScholarPubMed
Supplementary material: File

Qiu and Wang supplementary material

Qiu and Wang supplementary material

Download Qiu and Wang supplementary material(File)
File 109.6 KB