Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2025-01-06T04:34:42.913Z Has data issue: false hasContentIssue false

Affordances, response conflict, and enhanced-action tendencies in obsessive-compulsive disorder: an ERP study

Published online by Cambridge University Press:  07 January 2020

Adi Dayan-Riva*
Affiliation:
Department of Psychology, Ben Gurion University of the Negev, Beer Sheva, Israel Zlotowski Center for Neuroscience, Ben Gurion University of the Negev, Beer Sheva, Israel
Andrea Berger
Affiliation:
Department of Psychology, Ben Gurion University of the Negev, Beer Sheva, Israel Zlotowski Center for Neuroscience, Ben Gurion University of the Negev, Beer Sheva, Israel
Gideon Emanuel Anholt
Affiliation:
Department of Psychology, Ben Gurion University of the Negev, Beer Sheva, Israel
*
Author for correspondence: Adi Dayan-Riva, E-mail: [email protected]

Abstract

Background

Obsessive-compulsive disorder (OCD) is characterized by recurrent, intrusive thoughts and/or behaviors. OCD symptoms are often triggered by external stimuli. Therefore, it has been suggested that difficulty inhibiting responses to stimuli associated with strong action tendencies may underlie symptoms. The present electrophysiological study examined whether stimuli evoking a strong automatic response are associated with enhanced action tendencies in OCD participants relative to healthy controls.

Methods

The lateralized readiness potential (LRP) and the N2 event-related potential (ERP) components were used as measures of action tendencies and inhibition, respectively. ERPs were recorded while 38 participants diagnosed with OCD and 38 healthy controls performed a variation of the Stroop task using colored arrows.

Results

The OCD group presented with larger LRP amplitudes than the control group. This effect was found specifically in the incongruent condition. Furthermore, an interaction effect was found between group and congruency such that the OCD group showed a reduced N2 in the incongruent condition compared to the congruent condition, whereas the control group demonstrated the opposite effect. Results support the hypothesis that OCD is characterized by stronger readiness-for-action and impaired inhibitory mechanisms, particularly when the suppression of a dominant response tendency is required. Our results were supported by source localization analyses for the LRP and N2 components. These findings were specific to OCD and not associated with anxiety and depression symptoms.

Conclusions

The present results support the notion of stronger habitual behavior and embodiment tendencies in OCD and impaired inhibitory control under conditions of conflict.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abramovitch, A., Abramowitz, J. S., & Mittelman, A. (2013). The neuropsychology of adult obsessive-compulsive disorder: A meta-analysis. Clinical Psychology Review, 33(8), 11631171. doi: 10.1016/j.cpr.2013.09.004.CrossRefGoogle ScholarPubMed
Abramovitch, A., & McKay, D. (2016). Behavioral impulsivity in obsessive-compulsive disorder. Journal of Behavioral Addictions, 5(3), 395397. doi: 10.1556/2006.5.2016.029.CrossRefGoogle ScholarPubMed
Abramovitch, A., Mittelman, A., Tankersley, A. P., Abramowitz, J. S., & Schweiger, A. (2015). Neuropsychological investigations in obsessive-compulsive disorder: A systematic review of methodological challenges. Psychiatry Research, 228(1), 112120. doi: 10.1016/j.psychres.2015.04.025.CrossRefGoogle ScholarPubMed
Allport, A., & Wylie, G. (2000). Task switching, stimulus-response bindings, and negative priming. In Monsell, S. & Driver, J. (Eds.), Control of cognitive processes: Attention and performance XVIII (pp. 3570). Cambridge, MA: MIT Press. Retrieved from https://www.researchgate.net/profile/Nachshon_Meiran/publication/239062162_Reconfiguration_of_stimulus_task_sets_and_response_task_sets_during_task_switching/links/0a85e537b979f98c5f000000.pdf#page=35.Google Scholar
American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders (DSM-5®). Arlington, VA: American Psychiatric Publishing.Google Scholar
Anholt, G. E., & Kalanthroff, E. (2013). Letter to the editor: Recent advances in research on cognition and emotion in OCD: A review. Current Psychiatry Reports, 15(12), 416. doi: 10.1007/s11920-013-0416-x.CrossRefGoogle Scholar
Anholt, G. E., Linkovski, O., Kalanthroff, E., & Henik, A. (2012). If I do it, it must be important: Integrating basic cognitive research findings with cognitive behavior theory of obsessive-compulsive disorder. Psicoterapia Comportamental e Cognitiva, 18, 6979. Retrieved from https://psycnet.apa.org/record/2012-10991-004.Google Scholar
Armstrong, R. A. (2014). When to use the Bonferroni correction. Ophthalmic & Physiological Optics: The Journal of the British College of Ophthalmic Opticians (Optometrists), 34(5), 502508. doi: 10.1111/opo.12131.CrossRefGoogle ScholarPubMed
Aron, A. R., Fletcher, P. C., Bullmore, E. T., Sahakian, B. J., & Robbins, T. W. (2003). Stop-signal inhibition disrupted by damage to right inferior frontal gyrus in humans. Nature Neuroscience, 6(2), 115116. doi: 10.1016/j.tics.2004.02.010.CrossRefGoogle ScholarPubMed
Aron, A. R., Robbins, T. W., & Poldrack, R. A. (2004). Inhibition and the right inferior frontal cortex. Trends in Cognitive Sciences, 8(4), 170177. doi: 10.1016/j.tics.2004.02.010.CrossRefGoogle ScholarPubMed
Aron, A. R., Robbins, T. W., & Poldrack, R. A. (2014). Inhibition and the right inferior frontal cortex: One decade on. Trends in Cognitive Sciences, 18(4), 177185. doi: 10.1016/j.tics.2013.12.003.CrossRefGoogle Scholar
Bannon, S., Gonsalvez, C. J., Croft, R. J., & Boyce, P. M. (2002). Response inhibition deficits in obsessive-compulsive disorder. Psychiatry Research, 110(2), 165174. doi: 10.1016/S0165-1781(02)00104-X.CrossRefGoogle ScholarPubMed
Banich, M. T., Milham, M. P., Atchley, R. A., Cohen, N. J., Webb, A., Wszalek, T., … Shah, C. (2000). Prefrontal regions play a predominant role in imposing an attentional ‘set’: Evidence from fMRI. Cognitive Brain Research, 10(1–2), 19. doi: 10.1016/S0926-6410(00)00015-X.CrossRefGoogle ScholarPubMed
Beck, A. T., Ward, C., & Mendelson, M. (1961). Beck depression inventory (BDI). Archives of General Psychiatry, 4(6), 561571. doi: 10.1001/archpsyc.1961.01710120031004.CrossRefGoogle Scholar
Bekker, E. M., Kenemans, J. L., & Verbaten, M. N. (2005). Source analysis of the N2 in a cued Go/NoGo task. Cognitive Brain Research, 22(2), 221231. doi: 10.1016/j.cogbrainres.2004.08.011.CrossRefGoogle Scholar
Bench, C., Frith, C. D., Grasby, P. M., Friston, K. J., Paulesu, E., Frackowiak, R. S. J., & Dolan, R. J. (1993). Investigations of the functional anatomy of attention using the Stroop test. Neuropsychologia, 31(9), 907922. doi: 10.1016/0028-3932(93)90147-R.CrossRefGoogle ScholarPubMed
Boulougouris, V., Chamberlain, S. R., & Robbins, T. W. (2009). Cross-species models of OCD spectrum disorders. Psychiatry Research, 170(1), 1521. doi: 10.1016/j.psychres.2008.07.016.CrossRefGoogle ScholarPubMed
Brown, G. G., Kindermann, S. S., Siegle, G. J., Granholm, E., Wong, E. C., & Buxton, R. B. (1999). Brain activation and pupil response during covert performance of the Stroop Color Word task. Journal of the International Neuropsychological Society, 5(4), 308319. doi: 10.1017/S1355617799544020.CrossRefGoogle ScholarPubMed
Brown, S. P., Mathur, B. N., Olsen, S. R., Luppi, P. H., Bickford, M. E., & Citri, A. (2017). New breakthroughs in understanding the role of functional interactions between the neocortex and the claustrum. Journal of Neuroscience, 37(45), 1087710881. doi: 10.1523/JNEUROSCI.1837-17.2017.CrossRefGoogle ScholarPubMed
Chamberlain, S. R., Blackwell, A. D., Fineberg, N. A., Robbins, T. W., & Sahakian, B. J. (2005). The neuropsychology of obsessive-compulsive disorder: The importance of failures in cognitive and behavioral inhibition as candidate endophenotypic markers. Neuroscience & Biobehavioral Reviews, 29(3), 399419. doi: 10.1016/j.neubiorev.2004.11.006.CrossRefGoogle ScholarPubMed
Chamberlain, S. R., Fineberg, N. A., Blackwell, A. D., Robbins, T. W., & Sahakian, B. J. (2006). Motor inhibition and cognitive flexibility in obsessive-compulsive disorder and trichotillomania. American Journal of Psychiatry, 163(7), 12821284. doi: 10.1176/ajp.2006.163.7.1282#.CrossRefGoogle ScholarPubMed
Ciesielski, K. T., Rowland, L. M., Harris, R. J., Kerwin, A. A., Reeve, A., & Knight, J. E. (2011). Increased anterior brain activation to correct responses on high-conflict Stroop task in obsessive-compulsive disorder. Clinical Neurophysiology, 122(1), 107113. doi: 10.1016/j.clinph.2010.05.027.CrossRefGoogle ScholarPubMed
Coles, M. G. (1989). Modern mind-brain reading: Psychophysiology, physiology, and cognition. Psychophysiology, 26(3), 251269. Retrieved from https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1469-8986.1989.tb01916.x.CrossRefGoogle ScholarPubMed
Coles, M. G., Smid, H. G., Scheffers, M. K., & Otten, L. J. (1995). Mental chronometry and the study of human information processing. In Rugg, M. D. & Coles, M. G. H. (Eds.), Oxford Psychology series, No. 25. Electrophysiology of mind: Event-related brain potentials and cognition (pp. 86131). New York, NY: Oxford University Press.Google Scholar
Crick, F. C., & Koch, C. (2005). What is the function of the claustrum? Philosophical Transactions of the Royal Society B: Biological Sciences, 360(1458), 12711279. doi: 10.1098/rstb.2005.1661.CrossRefGoogle ScholarPubMed
Dayan, A., Berger, A., & Anholt, G. E. (2014). Enhanced action tendencies in high versus low obsessive-compulsive symptoms: An event-related potential study. Psychiatry Research: Neuroimaging, 224(2), 133138. doi: 10.1016/j.pscychresns.2014.07.007.CrossRefGoogle Scholar
Dayan, A., Berger, A., & Anholt, G. E. (2017). Enhanced action tendencies in obsessive-compulsive disorder: An ERP study. Behaviour Research and Therapy, 93, 1321. doi: 10.1016/j.brat.2017.03.005.CrossRefGoogle Scholar
Dayan-Riva, A., Berger, A., & Anholt, G. E. (2019). Early cognitive processes in OCD: An ERP study. Journal of Affective Disorders, 246, 429436. doi: 10.1016/j.jad.2018.12.109.CrossRefGoogle Scholar
de Jong, R., Coles, M. G., & Logan, G. D. (1995). Strategies and mechanisms in nonselective and selective inhibitory motor control. Journal of Experimental Psychology Human Perception and Performance, 21, 498498. doi: 10.1037/0096-1523.21.3.498.CrossRefGoogle ScholarPubMed
de Jong, R., Coles, M. G., Logan, G. D., & Gratton, G. (1990). In search of the point of no return: The control of response processes. Journal of Experimental Psychology: Human Perception and Performance, 16(1), 164182. doi: 10.1037/0096-1523.16.1.164.Google ScholarPubMed
de Jong, R., Wierda, M., Mulder, G., & Mulder, L. J. (1988). Use of partial stimulus information in response processing. Journal of Experimental Psychology: Human Perception and Performance, 14(4), 682. doi: 10.1037/0096-1523.14.4.682.Google ScholarPubMed
DeLong, M. R., Alexander, G. E., Georgopoulos, A. P., Crutcher, M. D., Mitchell, S. J., & Richardson, R. T. (1984). Role of basal ganglia in limb movements. Human Neurobiology, 2(4), 235244. Retrieved from https://europepmc.org/abstract/med/6715208.Google ScholarPubMed
de Wit, S. J., de Vries, F. E., van der Werf, Y. D., Cath, D. C., Heslenfeld, D. J., Veltman, E. M., … van den Heuvel, O. A. (2012). Presupplementary motor area hyperactivity during response inhibition: A candidate endophenotype of obsessive-compulsive disorder. American Journal of Psychiatry, 169(10), 11001108. doi: 10.1176/appi.ajp.2012.12010073.CrossRefGoogle ScholarPubMed
Egner, T., & Hirsch, J. (2005). The neural correlates and functional integration of cognitive control in a Stroop task. Neuroimage, 24(2), 539547. doi: 10.1016/j.neuroimage.2004.09.007.CrossRefGoogle Scholar
Eimer, M. (1998). The lateralized readiness potential as an online measure of central response activation processes. Behavior Research Methods, Instruments, & Computers, 30(1), 146156. doi: 10.3758/BF03209424.CrossRefGoogle Scholar
Eisen, J. L., Mancebo, M. A., Pinto, A., Coles, M. E., Pagano, M. E., Stout, R., & Rasmussen, S. A. (2006). Impact of obsessive-compulsive disorder on quality of life. Comprehensive Psychiatry, 47(4), 270275. doi: 10.1016/j.comppsych.2005.11.006.CrossRefGoogle ScholarPubMed
Falkenstein, M., Hoormann, J., & Hohnsbein, J. (1999). ERP components in Go/Nogo tasks and their relation to inhibition. Acta Psychologica, 101(2–3), 267291. doi: 10.1016/S0001-6918(99)00008-6.CrossRefGoogle Scholar
Fan, J., Liu, W., Lei, H., Cai, L., Zhong, M., Dong, J., … Zhu, X. (2016). Components of inhibition in autogenous- and reactive-type obsessive-compulsive disorder: Dissociation of interference control. Biological Psychology, 117, 117130. doi: 10.1016/j.biopsycho.2016.03.008.CrossRefGoogle ScholarPubMed
Foa, E. B., Huppert, J. D., Leiberg, S., Langner, R., Kichic, R., Hajcak, G., & Salkovskis, P. M. (2002). The obsessive-compulsive inventory: Development and validation of a short version. Psychological Assessment, 14(4), 485496. doi: 10.1037/1040-3590.14.4.485.CrossRefGoogle ScholarPubMed
Ferrão, Y. A., Shavitt, R. G., Prado, H., Fontenelle, L. F., Malavazzi, D. M., de Mathis, M. A., … & do Rosário, M. C. (2012). Sensory phenomena associated with repetitive behaviors in obsessive-compulsive disorder: an exploratory study of 1001 patients. Psychiatry Research, 197(3), 253258. doi: 10.1016/j.psychres.2011.09.017CrossRefGoogle ScholarPubMed
Folstein, J. R., & Van Petten, C. (2008). Influence of cognitive control and mismatch on the N2 component of the ERP: A review. Psychophysiology, 45(1), 152170. doi: 10.1111/j.1469-8986.2007.00602.x.Google ScholarPubMed
Gajewski, P. D., Stoerig, P., & Falkenstein, M. (2008). ERP – Correlates of response selection in a response conflict paradigm. Brain Research, 1189, 127134. doi: 10.1016/j.brainres.2007.10.076.CrossRefGoogle Scholar
Galbaud du Fort, G., Newman, S. C., & Bland, R. C. (1993). Psychiatric comorbidity and treatment seeking: Sources of selection bias in the study of clinical populations. The Journal of Nervous and Mental Disease, 181(8), 467474. doi: 10.1097/00005053-199308000-00001.CrossRefGoogle Scholar
Garavan, H., Ross, T. J., Kaufman, J., & Stein, E. A. (2003). A midline dissociation between error-processing and response-conflict monitoring. Neuroimage, 20(2), 11321139. doi: 10.1016/S1053-8119(03)00334-3.CrossRefGoogle ScholarPubMed
Garavan, H., Ross, T. J., & Stein, E. A. (1999). Right hemispheric dominance of inhibitory control: An event-related functional MRI study. Proceedings of the National Academy of Sciences, 96(14), 83018306. doi: 10.1073/pnas.96.14.8301.CrossRefGoogle ScholarPubMed
Gibson, J. J. (1979). The ecological approach to visual perception. Boston, MA: Houghton-Mifflin.Google Scholar
Gillan, C. M., Kosinski, M., Whelan, R., Phelps, E. A., & Daw, N. D. (2016). Characterizing a psychiatric symptom dimension related to deficits in goal-directed control. Elife, 5, 124. doi: 10.7554/eLife.11305.CrossRefGoogle ScholarPubMed
Gillan, C. M., Papmeyer, M., Morein-Zamir, S., Sahakian, B. J., Fineberg, N. A., Robbins, T. W., & de Wit, S. (2011). Disruption in the balance between goal-directed behavior and habit learning in obsessive-compulsive disorder. American Journal of Psychiatry, 168(7), 718726. doi: 100.1176/appi.ajp.2011.10071062.CrossRefGoogle ScholarPubMed
Gilbert, D. L., Bansal, A. S., Sethuraman, G., Sallee, F. R., Zhang, J., Lipps, T., & Wassermann, E. M. (2004). Association of cortical disinhibition with tic, ADHD, and OCD severity in Tourette syndrome. Movement Disorders, 19(4), 416425. doi: 10.1002/mds.20044.CrossRefGoogle ScholarPubMed
Goll, Y., Atlan, G., & Citri, A. (2015). Attention: The claustrum. Trends in Neurosciences, 38(8), 486495. doi: 10.1016/j.tins.2015.05.006.CrossRefGoogle ScholarPubMed
Goodman, W. K., Price, L. H., Rasmussen, S. A., Mazure, C., Fleischmann, R. L., Hill, C. L., … Charney, D. S. (1989). The Yale-Brown obsessive-compulsive scale: I. Development, use, and reliability. Archives of General Psychiatry, 46(11), 10061011. doi: 10.1001/archpsyc.1989.01810110048007.CrossRefGoogle ScholarPubMed
Gratton, G., Coles, M. G., Sirevaag, E. J., Eriksen, C. W., & Donchin, E. (1988). Pre- and poststimulus activation of response channels: A psychophysiological analysis. Journal of Experimental Psychology: Human Perception and Performance, 14(3), 331. doi: 10.1037/0096-1523.14.3.331.Google ScholarPubMed
Graybiel, A. M., & Rauch, S. L. (2000). Toward a neurobiology of obsessive-compulsive disorder. Neuron, 28(2), 343347. doi: 10/1016/S0896-6273(00)00113-6.CrossRefGoogle Scholar
Greenberg, B. D., Ziemann, U., Cora-Locatelli, G., Harmon, A., Murphy, D. L., Keel, J. C., & Wassermann, E. M. (2000). Altered cortical excitability in obsessive-compulsive disorder. Neurology, 54(1), 142142. doi: 10.1212/WNL.54.1.142.CrossRefGoogle ScholarPubMed
Hajcak, G., McDonald, N., & Simons, R. F. (2003). To err is autonomic: Error related brain potentials, ANS activity, and post error compensatory behavior. Psychophysiology, 40(6), 895903. doi: 10.1111/1469-8986.00107CrossRefGoogle ScholarPubMed
Harrison, B. J., Soriano-Mas, C., Pujol, J., Ortiz, H., López-Solà, M., Hernández-Ribas, R., … Menchon, J. M. (2009). Altered corticostriatal functional connectivity in obsessive-compulsive disorder. Archives of General Psychiatry, 66(11), 11891200. doi: 10.1001/archgenpsychiatry.2009.152.CrossRefGoogle ScholarPubMed
Herrmann, M. J., Jacob, C., Unterecker, S., & Fallgatter, A. J. (2003). Reduced response-inhibition in obsessive-compulsive disorder measured with topographic evoked potential mapping. Psychiatry Research, 120(3), 265271. doi: 10.1016/S0165-1781(03)00188-4.CrossRefGoogle ScholarPubMed
Howe, M. W., Atallah, H. E., McCool, A., Gibson, D. J., & Graybiel, A. M. (2011). Habit learning is associated with major shifts in frequencies of oscillatory activity and synchronized spike firing in striatum. Proceedings of the National Academy of Sciences, 108(40), 1680116806. doi: 10.1073/pnas.1113158108.CrossRefGoogle ScholarPubMed
Jeffreys, H. (1998). The theory of probability. Oxford, UK: Oxford University Press.Google Scholar
Junghoefer, M., Elbert, T., Tucker, D. M., & Braun, C. (1999). The polar average referenced effect: A bias in estimating the head surface integral in EEG recording. Electroencephalography and Clinical Neurophysiology, 98, 422434. doi: 10.1016/S1388-2457(99)00044-9.Google Scholar
Kalanthroff, E., Anholt, G. E., & Henik, A. (2014). Always on guard: Test of high vs. low control conditions in obsessive-compulsive disorder patients. Psychiatry Research, 219(2), 322328. doi: 10.1016/j.psychres.2014.05.050.CrossRefGoogle ScholarPubMed
Kalanthroff, E., Anholt, G. E., Keren, R., & Henik, A. (2013a). What should I (not) do? Control over irrelevant task in obsessive-compulsive disorder patients. Clinical Neuropsychiatry, 10(3), 3740. Retrieved from http://aranne5.bgu.ac.il/others/KalanthroffEyal3.pdf#page=68.Google Scholar
Kalanthroff, E., Goldfarb, L., & Henik, A. (2013b). Evidence for interaction between the stop signal and the Stroop task conflict. Journal of Experimental Psychology: Human Perception and Performance, 39(2), 579592. doi: 10.1037/a0027429.Google Scholar
Kalanthroff, E., Henik, A., Simpson, H. B., Todder, D., & Anholt, G. E. (2017). To do or not to do? Task control deficit in obsessive-compulsive disorder. Behavior Therapy, 48(5), 603613. doi: 10.1016/j.beth.2017.01.004.CrossRefGoogle Scholar
Kane, M. J., & Engle, R. W. (2003). Working-memory capacity and the control of attention: The contributions of goal neglect, response competition, and task set to Stroop interference. Journal of Experimental Psychology: General, 132(1), 47. doi: 10.1037/0096-3445.132.1.47.CrossRefGoogle ScholarPubMed
Keil, A., Debener, S., Gratton, G., Junghöfer, M., Kappenman, E. S., Luck, S. J., … Devrim-Üçok, M. (2014). N2 and P3 potentials in early-onset and late-onset patients with obsessive-compulsive disorder. Depression and Anxiety, 31(12), 9971006. doi:10.1002/da.22212.Google Scholar
Keus, I. M., Jenks, K. M., & Schwarz, W. (2005). Psychophysiological evidence that the SNARC effect has its functional locus in a response selection stage. Cognitive Brain Research, 24(1), 4856. doi: 10.1016/j.cogbrainres.2004.12.005.CrossRefGoogle Scholar
Kiefer, M., Marzinzik, F., Weisbrod, M., Scherg, M., & Spitzer, M. (1998). The time course of brain activations during response inhibition: Evidence from event-related potentials in a Go/No Go task. Neuroreport, 9(4), 765770. doi: 10.1097/00001756-199803090-00037.CrossRefGoogle Scholar
Kim, M., Lee, T. H., Choi, J. S., Kwak, Y. B., Hwang, W. J., Kim, T., … Kim, S. N. (2017). Neurophysiological correlates of altered response inhibition in internet gaming disorder and obsessive-compulsive disorder: Perspectives from impulsivity and compulsivity. Scientific Reports, 7, 41742. doi: 10.1038/srep41742.CrossRefGoogle ScholarPubMed
Kim, M. S., Kim, Y. Y., Yoo, S. Y., & Kwon, J. S. (2007). Electrophysiological correlates of behavioral response inhibition in patients with obsessive-compulsive disorder. Depression and Anxiety, 24(1), 2231. doi: 10.1002/da.20195.CrossRefGoogle ScholarPubMed
Kok, A. (1999). Varieties of inhibition: Manifestations in cognition, event-related potentials, and aging. Acta Psychologica, 101(2), 129158. doi: 10.1016/S0001-6918(99)00003-7.CrossRefGoogle ScholarPubMed
Konishi, S., Nakajima, K., Uchida, I., Kikyo, H., Kameyama, M., & Miyashita, Y. (1999). Common inhibitory mechanism in human inferior prefrontal cortex revealed by event-related functional MRI. Brain, 122(5), 981991. doi: 10.1093/brain/122.5.981.CrossRefGoogle ScholarPubMed
Krishna, R., Udupa, S., George, C. M., Kumar, K. J., Viswanath, B., Kandavel, T., … Reddy, Y. J. (2011). Neuropsychological performance in OCD: A study in medication-naive patients. Progress in Neuropsychopharmacology, 35(8), 19691976. doi: 10.1016/j.pnpbp.2011.09.009.CrossRefGoogle ScholarPubMed
Kwon, J. S., Kim, J. J., Lee, D. W., Lee, J. S., Lee, D. S., Kim, M. S., … Lee, M. C. (2003). Neural correlates of clinical symptoms and cognitive dysfunctions in obsessive-compulsive disorder. Psychiatry Research: Neuroimaging, 122(1), 3747. doi: 10.1016/S0925-4927(02)00104-X.CrossRefGoogle ScholarPubMed
Langenecker, S. A., Nielson, K. A., & Rao, S. M. (2004). fMRI of healthy older adults during Stroop interference. Neuroimage, 21(1), 192200. doi: 10.1016/j.neuroimage.2003.08.027.CrossRefGoogle ScholarPubMed
Leisman, G., & Melillo, R. (2013). The basal ganglia: Motor and cognitive relationships in a clinical neurobehavioral context. Reviews in the Neurosciences, 24(1), 925. doi: 10.1515/revneuro-2012-0067.CrossRefGoogle Scholar
Leuthold, H., & Jentzsch, I. (2002). Distinguishing neural sources of movement preparation and execution: An electrophysiological analysis. Biological Psychology, 60(2–3), 173198. doi: 10.1016/S0301-0511(02)00032-7.CrossRefGoogle ScholarPubMed
Lingawi, N.W., & Balleine, B.W. (2012). Amygdala central nucleus interacts with dorsolateral striatum to regulate the acquisition of habits. Journal of Neuroscience, 32(3), 10731081. doi: 10.1523/JNEUROSCI.4806-11.2012.CrossRefGoogle ScholarPubMed
Linkovski, O., Kalanthroff, E., Henik, A., & Anholt, G. (2013). Did I turn off the stove? Good inhibitory control can protect from influences of repeated checking. Journal of Behavior Therapy and Experimental Psychiatry, 44(1), 3036. doi: 10.1016/j.jbtep.2012.07.002.CrossRefGoogle ScholarPubMed
Liu, X., Banich, M. T., Jacobson, B. L., & Tanabe, J. L. (2004). Common and distinct neural substrates of attentional control in an integrated Simon and spatial Stroop task as assessed by event-related fMRI. Neuroimage, 22(3), 10971106. doi: 10.1016/j.neuroimage.2004.02.033.CrossRefGoogle Scholar
Logan, G. D., & Cowan, W. B. (1984). On the ability to inhibit thought and action: A theory of an act of control. Psychological Review, 91(3), 295. doi: 10.1037/0033-295X.91.3.295.CrossRefGoogle Scholar
Lu, C. H., & Proctor, R. W. (1995). The influence of irrelevant location information on performance: A review of the Simon and spatial Stroop effects. Psychonomic Bulletin & Review, 2(2), 174207. doi: 10.3758/BF03210959.CrossRefGoogle ScholarPubMed
Luck, S. J. (2014). An introduction to the event-related potential technique. Cambridge, MA: MIT Press.Google Scholar
Luck, S. J., & Kappenman, E. S. (Eds.) (2011). The Oxford handbook of event-related potential components. New York, NY: Oxford University Press.Google Scholar
Luna, B., Padmanabhan, A., & O'Hearn, K. (2010). What has fMRI told us about the development of cognitive control through adolescence? Brain and Cognition, 72(1), 101113. doi: 10.1016/j.bandc.2009.08.005.CrossRefGoogle ScholarPubMed
MacLeod, C. M. (1991). Half a century of research on the Stroop effect: An integrative review. Psychological Bulletin, 109(2), 163203. doi: 10.1037/0033-2909.109.2.163.CrossRefGoogle Scholar
Makris, S., Hadar, A.A., & Yarrow, K. (2011). Viewing objects and planning actions: On the potentiation of grasping behaviours by visual objects. Brain and Cognition, 77, 257264. doi: 10.1016/j.bandc.2011.08.002.CrossRefGoogle ScholarPubMed
McBride, J., Boy, F., Husain, M., & Sumner, P. (2012). Automatic motor activation in the executive control of action. Frontiers in Human Neuroscience, 6, 114. doi: 10.3389/fnhum.2012.00082.CrossRefGoogle ScholarPubMed
McConaughy, S. H., & Achenbach, T. M. (1994). Comorbidity of empirically based syndromes in matched general population and clinical samples. Journal of Child Psychology and Psychiatry, 35(6), 11411157. doi: 10.1111/j.1469-7610.1994.tb01814.x.CrossRefGoogle ScholarPubMed
Mead, L. A., Mayer, A. R., Bobholz, J. A., Woodley, S. J., Cunningham, J. M., Hammeke, T. A., & Rao, S. M. (2002). Neural basis of the Stroop interference task: Response competition or selective attention? Journal of the International Neuropsychological Society, 8(6), 735742. doi: 10.1017/S1355617702860015.CrossRefGoogle ScholarPubMed
Menzies, L., Achard, S., Chamberlain, S. R., Fineberg, N., Chen, C. H., Del Campo, N., … Bullmore, E. (2007). Neurocognitive endophenotypes of obsessive-compulsive disorder. Brain, 130(12), 32233236. doi: 10.1093/brain/awm205.CrossRefGoogle ScholarPubMed
Menzies, L., Chamberlain, S. R., Laird, A. R., Thelen, S. M., Sahakian, B. J., & Bullmore, E. T. (2008). Integrating evidence from neuroimaging and neuropsychological studies of obsessive-compulsive disorder: The orbitofronto-striatal model revisited. Neuroscience & Biobehavioral Reviews, 32(3), 525549. doi: 10.1016/j.neubiorev.2007.09.005.CrossRefGoogle ScholarPubMed
Michel, C. M., Murray, M. M., Lantz, G., Gonzalez, S., Spinelli, L., & de Peralta, R. G. (2004). EEG source imaging. Clinical Neurophysiology, 115(10), 21952222. doi: 10.1016/j.clinph.2004.06.001.CrossRefGoogle ScholarPubMed
Modell, J. G., Mountz, J. M., Curtis, G. C., & Greden, J. F. (1989). Neurophysiologic dysfunction in basal ganglia/limbic striatal and thalamocortical circuits as a pathogenetic mechanism of obsessive-compulsive disorder. The Journal of Neuropsychiatry and Clinical Neurosciences, 1(1), 2736. doi: 10.1176/jnp.1.1.27.Google ScholarPubMed
Monsell, S. (2003). Task switching. Trends in Cognitive Sciences, 7(3), 134140. doi: 10.1016/S1364-6613(03)00028-7.CrossRefGoogle ScholarPubMed
Mordkoff, J. T., & Gianaros, P. J. (2000). Detecting the onset of the lateralized readiness potential: A comparison of available methods and procedures. Psychophysiology, 37(3), 347360. doi: 10.1111/1469-8986.3730347.CrossRefGoogle ScholarPubMed
Morein-Zamir, S., Voon, V., Dodds, C. M., Sule, A., van Niekerk, J., Sahakian, B. J., Robbins, T. W. (2016). Divergent subcortical activity for distinct executive functions: Stopping and shifting in obsessive compulsive disorder. Psychological Medicine, 46(4), 829840. doi: 10.1017/S0033291715002330.CrossRefGoogle ScholarPubMed
Nachev, P., Kennard, C., & Husain, M. (2008). Functional role of the supplementary and pre-supplementary motor areas. Nature Reviews Neuroscience, 9(11), 856869. doi: 10.1038/nrn2478.CrossRefGoogle ScholarPubMed
Pascual-Marqui, R.D. (2002). Standardized low-resolution brain electromagnetic tomography (sLORETA): Technical details. Methods and Findings in Experimental & Clinical Pharmacology, 24 (Suppl D), 512. Retrieved from http://www.institutpsychoneuro.com/wp-content/uploads/2015/10/sLORETA2002.pdf.Google ScholarPubMed
Pearson, J., Naselaris, T., Holmes, E. A., & Kosslyn, S. M. (2015). Mental imagery: functional mechanisms and clinical applications. Trends in cognitive sciences, 19(10), 590602. doi: 10.1016/j.tics.2015.08.003.CrossRefGoogle ScholarPubMed
Penades, R., Catalan, R., Rubia, K., Andres, S., Salamero, M., & Gasto, C. (2007). Impaired response inhibition in obsessive compulsive disorder. European Psychiatry, 22(6), 404410. doi: 10.1016/j.eurpsy.2006.05.001.CrossRefGoogle ScholarPubMed
Perneger, T. V. (1998). What's wrong with Bonferroni adjustments. British Medical Journal, 316(7139), 12361238. doi: 10.1136/bmj.316.7139.1236.CrossRefGoogle ScholarPubMed
Praamstra, P., Schmitz, F., Freund, H. J., & Schnitzler, A. (1999). Magnetoencephalographic correlates of the lateralized readiness potential. Cognitive Brain Research, 8(2), 7785. doi: 10.1016/S0926-6410(99)00008-7.CrossRefGoogle ScholarPubMed
Proctor, R. W., & Reeve, T. G. (1990). Research on stimulus response compatibility: Toward a comprehensive account. In Proctor, R. W. & Reeve, T. G. (Eds.), Stimulus-response compatibility: An integrated perspective (pp. 483494). Amsterdam, Holand: North-Holland.Google Scholar
Qiu, J., Luo, Y., Wang, Q., Zhang, F., & Zhang, Q. (2006). Brain mechanism of Stroop interference effect in Chinese characters. Brain Research, 1072(1), 186193. doi: 10.1016/j.brainres.2005.12.029.CrossRefGoogle ScholarPubMed
Radhu, N., de Jesus, D. R., Ravindran, L. N., Zanjani, A., Fitzgerald, P. B., & Daskalakis, Z. J. (2013). A meta-analysis of cortical inhibition and excitability using transcranial magnetic stimulation in psychiatric disorders. Clinical Neurophysiology, 124(7), 13091320. doi: 10.1016/j.clinph.2013.01.014.CrossRefGoogle ScholarPubMed
Rauch, S. L., Savage, C. R., Alpert, N. M., Dougherty, D., Kendrick, A., Curran, T., … Jenike, M. A. (1997). Probing striatal function in obsessive-compulsive disorder: A PET study of implicit sequence learning. Journal of Neuropsychiatry and Clinical Neurosciences, 9(4), 568573. Retrieved from http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.470.4715&rep=rep1&type=pdf.Google ScholarPubMed
Richter, M. A., de Jesus, D. R., Hoppenbrouwers, S., Daigle, M., Deluce, J., Ravindran, L. N., & Daskalakis, Z. J. (2012). Evidence for cortical inhibitory and excitatory dysfunction in obsessive compulsive disorder. Neuropsychopharmacology, 37(5), 11441151. doi:10.1038/npp.2011.300.CrossRefGoogle ScholarPubMed
Riesel, A., Klawohn, J., Kathmann, N., & Endrass, T. (2017). Conflict monitoring and adaptation as reflected by N2 amplitude in obsessive-compulsive disorder. Psychological Medicine, 47(8), 13791388. doi: 10.1017/S0033291716003597.CrossRefGoogle ScholarPubMed
Rogers, R. D., & Monsell, S. (1995). Costs of a predictable switch between simple cognitive tasks. Journal of Experimental Psychology: General, 124(2), 207. doi: 10.1037/0096-3445.124.2.207.CrossRefGoogle Scholar
Rotge, J. Y., Langbour, N., Guehl, D., Bioulac, B., Jaafari, N., Allard, M., … Burbaud, P. (2010). Gray matter alterations in obsessive-compulsive disorder: An anatomic likelihood estimation meta-analysis. Neuropsychopharmacology, 35(3), 686691. doi: 10.1038/npp.2009.175.CrossRefGoogle ScholarPubMed
Roth, R. M., Saykin, A. J., Flashman, L. A., Pixley, H. S., West, J. D., & Mamourian, A. C. (2007). Event-related functional magnetic resonance imaging of response inhibition in obsessive-compulsive disorder. Biological Psychiatry, 62(8), 901909. doi: 10.1016/j.biopsych.2006.12.007.CrossRefGoogle ScholarPubMed
Rouder, J. N., Speckman, P. L., Sun, D., Morey, R. D., & Iverson, G. (2009). Bayesian T tests for accepting and rejecting the null hypothesis. Psychonomic Bulletin & Review, 16(2), 225237. doi: 10.3758/PBR.16.2.225.CrossRefGoogle Scholar
Rubia, K., Cubillo, A., Woolley, J., Brammer, M. J., & Smith, A. (2011). Disorder-specific dysfunctions in patients with attention-deficit/hyperactivity disorder compared to patients with obsessive-compulsive disorder during interference inhibition and attention allocation. Human Brain Mapping, 32(4), 601611. doi: 10.1002/hbm.21048.CrossRefGoogle ScholarPubMed
Ruchsow, M., Reuter, K., Hermle, L., Ebert, D., Kiefer, M., & Falkenstein, M. (2007). Executive control in obsessive-compulsive disorder: Event-related potentials in a Go/Nogo task. Journal of Neural Transmission, 114(12), 15951601. doi: 10.1007/s00702-007-0779-4.CrossRefGoogle Scholar
Salkovskis, P. M., Millar, J., Gregory, J. D., & Wahl, K. (2017). The termination of checking and the role of just right feelings: A study of obsessional checkers compared with anxious and non-clinical controls. Behavioural and cognitive psychotherapy, 45(2), 139155. doi: 10.1017/S135246581600031X.CrossRefGoogle ScholarPubMed
Salkovskis, P. M., & Warwick, H. M. (1985). Cognitive therapy of obsessive-compulsive disorder: Treating treatment failures. Behavioural and Cognitive Psychotherapy, 13(3), 243255. doi: 10.1017/S0141347300011095.CrossRefGoogle Scholar
Schneider, W., Eschman, A., & Zuccolotto, A. (2002). E-Prime: User's guide. Pittsburgh, PA: Psychological Software Tools.Google Scholar
Sheehan, D. V., Janavs, J., Baker, R., Harnett-Sheehan, K., Knapp, E., Sheehan, M., … Lepine, J. P. (1998). MINI – Mini International Neuropsychiatric Interview – English Version 5.0.0-DSM-IV. Journal of Clinical Psychiatry, 59, 3457. Retrieved from https://ci.nii.ac.jp/naid/10019856533/.Google Scholar
Simon, N. M., Otto, M. W., Wisniewski, S. R., Fossey, M., Sagduyu, K., Frank, E., … Pollack, M. H. (2004). Anxiety disorder comorbidity in bipolar disorder patients: Data from the first 500 participants in the Systematic Treatment Enhancement Program for Bipolar Disorder (STEP-BD). American Journal of Psychiatry, 161(12), 22222229. doi: 10.1176/appi/ajp.161.12.2222.CrossRefGoogle Scholar
Smith, J. B., Liang, Z., Watson, G. D., Alloway, K. D., & Zhang, N. (2017). Interhemispheric resting-state functional connectivity of the claustrum in the awake and anesthetized states. Brain Structure and Function, 222(5), 20412058. doi: 10.1007/s00429-016-1323-9.CrossRefGoogle ScholarPubMed
Spapé, M. M., Band, G. P., & Hommel, B. (2011). Compatibility-sequence effects in the Simon task reflect episodic retrieval but not conflict adaptation: Evidence from LRP and N2. Biological Psychology, 88(1), 116123. doi: 10.1016/j.biopsycho.2011.07.001.CrossRefGoogle Scholar
Spielberger, C. D. (1983). Manual for the state-trait anxiety inventory STAI. Palo Alto, CA: Consulting Psychologists Press.Google Scholar
Stevens, C. F. (2005). Consciousness: Crick and the claustrum. Nature, 435(7045), 10401041. doi: 10.1038/4351040a.CrossRefGoogle ScholarPubMed
Stroop, J. R. (1935). Studies of interference in serial verbal reactions. Journal of Experimental Psychology, 18(6), 643. doi: 10.1037/h0054651.CrossRefGoogle Scholar
Sulkowski, M. L., Mariaskin, A., & Storch, E. A. (2011). Obsessive-compulsive spectrum disorder symptoms in college students. Journal of American College Health, 59(5), 342348. doi: 10.1080/07448481.2010.511365.CrossRefGoogle ScholarPubMed
Thomas, S. J., Gonsalvez, C. J., & Johnstone, S. J. (2014). How specific are inhibitory deficits to obsessive-compulsive disorder? A neurophysiological comparison with panic disorder. Clinical Neurophysiology, 125(3), 463475. doi: 10.1016/j.clinph.2013.08.018.CrossRefGoogle ScholarPubMed
Tibi, L., van Oppen, P., van Balkom, A. J., Eikelenboom, M., Hendriks, G. J., & Anholt, G. E. (2018). The relationship between cognitions and symptoms in obsessive-compulsive disorder. Journal of Affective Disorders, 225, 495502. doi: 10.1016/j.jad.2017.08.072.CrossRefGoogle ScholarPubMed
Tipper, S. P., Paul, M. A., & Hayes, A. E. (2006). Vision-for-action: The effects of object property discrimination and action state on affordance compatibility effects. Psychonomic Bulletin & Review, 13(3), 493498. doi: 10.3758/BF03193875.CrossRefGoogle ScholarPubMed
Torgerson, C. M., Irimia, A., Goh, S. M., & Van Horn, J. D. (2015). The DTI connectivity of the human claustrum. Human Brain Mapping, 36(3), 827838. doi: 10.1002/hbm.22667.CrossRefGoogle ScholarPubMed
Umiltá, C., & Nicoletti, R. (1990). Spatial stimulus-response compatibility. Advances in Psychology, 65, 89116. doi: 10.1016/S0166-4115(08)61219-4.CrossRefGoogle Scholar
Valt, C., Stürmer, B., Sommer, W., & Boehm, S. (2017). Early response activation in repetition priming: An LRP study. Experimental Brain Research, 235(10), 29272934. doi: 10.1007/s00221-017-5017-1.CrossRefGoogle Scholar
van Schie, H. T., Mars, R. B., Coles, M. G., & Bekkering, H. (2004). Modulation of activity in medial frontal and motor cortices during error observation. Nature Neuroscience, 7(5), 549. doi: 10.1038/nn1239.CrossRefGoogle ScholarPubMed
van Veen, V., & Carter, C. S. (2002). The anterior cingulate as a conflict monitor: fMRI and ERP studies. Physiology & Behavior, 77(4), 477482. doi: 10.1016/S0031-9384(02)00930-7.CrossRefGoogle ScholarPubMed
Vaughan, H. G., Costa, L. D., & Ritter, W. (1968). Topography of the human motor potential. Electroencephalography and Clinical Neurophysiology, 25(1), 110. doi: 10.1016/0013-4694(68)90080-1.CrossRefGoogle ScholarPubMed
Verbruggen, F., & Logan, G. D. (2008). Response inhibition in the stop-signal paradigm. Trends in Cognitive Science, 12(11), 418424. doi: 10.1016/j.tics.2008.07.005.CrossRefGoogle ScholarPubMed
Verbruggen, F., McLaren, I. P., & Chambers, C. D. (2014). Banishing the control homunculi in studies of action control and behavior change. Perspectives on Psychological Science, 9(5), 497524. doi: 10.1177/1745691614526414.CrossRefGoogle ScholarPubMed
Woolley, J., Heyman, I., Brammer, M., Frampton, I., McGuire, P. K., & Rubia, K. (2008). Brain activation in paediatric obsessive-compulsive disorder during tasks of inhibitory control. The British Journal of Psychiatry, 192(1), 2531. doi: 10.1192/bjp.bp.107.036558.CrossRefGoogle ScholarPubMed
Yücel, M., Harrison, B. J., Wood, S. J., Fornito, A., Wellard, R. M., Pujol, J., … Pantelis, C. (2007). Functional and biochemical alterations of the medial frontal cortex in obsessive-compulsive disorder. Archives of General Psychiatry, 64(8), 946955. doi: 10.1001/archpsyc.64.8.946.CrossRefGoogle ScholarPubMed
Zhu, X. R., Zhang, H. J., Wu, T. T., Luo, W. B., & Luo, Y. J. (2010). Emotional conflict occurs at an early stage: Evidence from the emotional face-word Stroop task. Neuroscience Letters, 478(1), 14. doi: 10.1016/j.neulet.2010.04.036.CrossRefGoogle ScholarPubMed