Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-26T11:18:33.401Z Has data issue: false hasContentIssue false

Variants within the GABA transaminase (ABAT) gene region are associated with somatosensory evoked EEG potentials in families at high risk for affective disorders

Published online by Cambridge University Press:  09 January 2012

M. Wegerer
Affiliation:
Max Planck Institute of Psychiatry, Munich, Germany Faculty of Psychology, University of Vienna, Vienna, Austria
S. Adena
Affiliation:
Max Planck Institute of Psychiatry, Munich, Germany
A. Pfennig
Affiliation:
Max Planck Institute of Psychiatry, Munich, Germany
D. Czamara
Affiliation:
Max Planck Institute of Psychiatry, Munich, Germany
U. Sailer
Affiliation:
Faculty of Psychology, University of Vienna, Vienna, Austria
T. Bettecken
Affiliation:
Max Planck Institute of Psychiatry, Munich, Germany
B. Müller-Myhsok
Affiliation:
Max Planck Institute of Psychiatry, Munich, Germany
S. Modell
Affiliation:
Max Planck Institute of Psychiatry, Munich, Germany
M. Ising*
Affiliation:
Max Planck Institute of Psychiatry, Munich, Germany
*
*Address for correspondence: M. Ising, Dr.Phil., Max Planck Institute of Psychiatry, Kraepelinstraße 2–10, 80804 Munich, Germany. (Email: [email protected])

Abstract

Background

Depression frequently co-occurs with somatization, and somatic complaints have been reported as a vulnerability marker for affective disorders observable before disease onset. Somatization is thought to result from an increased attention to somatic sensations, which should be reflected in long-latency somatosensory evoked electroencephalogram (EEG) potentials (SSEPs) at the physiological level. Previous studies revealed that SSEPs are altered in depressed patients and suggested late SSEP components as vulnerability markers for affective disorders. Neurotransmitters such as serotonin, γ-aminobutyric acid (GABA) and the neuropeptide substance P may play an important role for both affective disorders and somatosensory processing.

Method

We investigated the associations between SSEPs and polymorphisms within candidate genes of the serotonergic, GABAergic as well as the substance P system in subjects at high risk for affective disorders. The sample was composed of high-risk families participating in the Munich Vulnerability Study and genetic association analyses were calculated using qfam (family-based association tests for quantitative traits) implemented in PLINK 1.05.

Results

We observed significant associations (false discovery rate <0.05) withstanding correction for multiple testing between late SSEP components (response strength 170–370 ms after stimulation) and four single nucleotide polymorphisms within the GABA transaminase (ABAT) gene region coding for a protein responsible for GABA degradation. No effects were found with the classical disease trait approach, suggesting SSEP marker specificity of the observed associations.

Conclusions

Our findings point to a possible role of ABAT gene-regulated GABA catabolism for an altered processing of somatosensory stimuli as a potential vulnerability marker for affective disorders.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2012 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abecasis, GR, Cardon, LR, Cookson, WO (2000). A general test of association for quantitative traits in nuclear families. American Journal of Human Genetics 66, 279292.CrossRefGoogle ScholarPubMed
Bair, MJ, Robinson, RL, Katon, W, Kroenke, K (2003). Depression and pain comorbidity. A literature review. Archives of Internal Medicine 163, 24332445.CrossRefGoogle ScholarPubMed
Barrett, JC, Fry, B, Maller, J, Daly, MJ (2005). Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21, 263265.CrossRefGoogle ScholarPubMed
Beck, AT, Rush, AJ, Shaw, BF, Emery, G (1986). Kognitive Therapie der Depression (Cognitive Therapy of Depression). PVU: Munich.Google Scholar
Benjamini, Y, Hochberg, Y (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society Series B (Methodological) 57, 289300.CrossRefGoogle Scholar
Berrettini, WH, Umberkoman-Wiita, B, Nurnberger, JI, Vogel, WH, Gershon, ES, Post, RM (1980). Platelet GABA-transaminase in affective illness. Psychiatry Research 7, 255260.CrossRefGoogle Scholar
Bickeböller, H, Fischer, C (2007). Einführung in die Genetische Epidemiologie (Introduction to Genetic Epidemiology). Springer: Berlin.Google Scholar
Burmeister, M, McInnis, MG, Zöllner, S (2008). Psychiatric genetics: progress amid controversy. Nature Reviews Genetics 9, 527540.CrossRefGoogle ScholarPubMed
Campbell, LC, Clauw, DJ, Keefe, FJ (2003). Persistent pain and depression: a biopsychosocial perspective. Biological Psychiatry 54, 399409.CrossRefGoogle ScholarPubMed
Clayton, PJ, Ernst, C, Angst, J (1994). Premorbid personality traits of men who develop unipolar or bipolar disorders. European Archives of Psychiatry and Clinical Neuroscience 243, 340346.CrossRefGoogle ScholarPubMed
Colon, EJ, de Weerd, AW (1986). Long-latency somatosensory evoked potentials. Journal of Clinical Neurophysiology 3, 279296.CrossRefGoogle ScholarPubMed
Conne, B, Stutz, A, Vassalli, JD (2000). The 3′ untranslated region of messenger RNA: a molecular ‘hotspot’ for pathology? Nature Medicine 6, 637641.CrossRefGoogle ScholarPubMed
Cryan, JF, Kaupmann, K (2005). Don't worry ‘B’ happy!: a role for GABAB receptors in anxiety and depression. Trends in Pharmacological Sciences 26, 3643.CrossRefGoogle Scholar
Derogatis, LR (1986). SCL-90-R. Self-report symptom inventory. In Internationale Skalen der Psychiatrie (International Scales of Psychiatry) (ed. Collegium Internationale Psychiatriae Scalarum). Beltz: Weinheim.Google Scholar
DeRubeis, RJ, Siegle, GJ, Hollon, SD (2008). Cognitive therapy versus medication for depression: treatment outcomes and neural mechanisms. Nature Reviews Neuroscience 9, 788796.CrossRefGoogle ScholarPubMed
Dietl, T, Dirlich, G, Vogl, L, Nickel, T, Sonntag, A, Strian, F, Lechner, C (2001). Enhanced long-latency somatosensory potentials in major depressive disorder. Journal of Psychiatric Research 35, 4348.CrossRefGoogle ScholarPubMed
Ebner, K, Singewald, N (2006). The role of substance P in stress and anxiety responses. Amino Acids 31, 251272.CrossRefGoogle ScholarPubMed
Elhwuegi, AS (2004). Central monoamines and their role in major depression. Progress in Neuro-Psychopharmacology and Biological Psychiatry 28, 435451.CrossRefGoogle ScholarPubMed
Enna, SJ, McCarson, KE (2006). The role of GABA in the mediation and perception of pain. Advances in Pharmacology 54, 127.CrossRefGoogle ScholarPubMed
Fulker, DW, Cherny, SS, Sham, PC, Hewitt, JK (1999). Combined linkage and association sib-pair analysis for quantitative traits. American Journal of Human Genetics 64, 259267.CrossRefGoogle ScholarPubMed
Gajwani, P, Forsthoff, A, Muzina, D, Amann, B, Gao, K, Elhaj, O, Calabrese, JR, Grunze, H (2005). Antiepileptic drugs in mood-disordered patients. Epilepsia 46 (Suppl. 4), 3844.CrossRefGoogle ScholarPubMed
Gottesman, II, Gould, TD (2003). The endophenotype concept in psychiatry: etymology and strategic intentions. American Journal of Psychiatry 160, 636645.CrossRefGoogle ScholarPubMed
Gottesman, II, Shields, J (1973). Genetic theorizing and schizophrenia. British Journal of Psychiatry 122, 1530.CrossRefGoogle ScholarPubMed
Hasler, G, Northoff, G (2011). Discovering imaging endophenotypes for major depression. Molecular Psychiatry 16, 604619.CrossRefGoogle ScholarPubMed
Holmes, A, Heilig, M, Rupniak, NMJ, Steckler, T, Griebel, G (2003). Neuropeptide systems as novel therapeutic targets for depression and anxiety disorders. Trends in Pharmacological Sciences 24, 580588.CrossRefGoogle ScholarPubMed
Ising, M, Dietl, T, Dirlich, G, Vogl, L, Pollmächer, T, Nickel, T, Sonntag, A, Strian, F, Lechner, C, Lauer, CJ, Modell, S (2004 a). Long-latency somatosensory potentials in high risk probands for affective disorders. Journal of Psychiatric Research 38, 219221.CrossRefGoogle ScholarPubMed
Ising, M, Lauer, CJ, Holsboer, F, Modell, S (2004 b). The Munich vulnerability study on affective disorders: premorbid psychometric profile of affected individuals. Acta Psychiatrica Scandinavica 109, 332338.CrossRefGoogle Scholar
Jasmin, L, Rabkin, SD, Granato, A, Boudah, A, Ohara, PT (2003). Analgesia and hyperalgesia from GABA-mediated modulation of the cerebral cortex. Nature 424, 316320.CrossRefGoogle ScholarPubMed
Jasper, HH (1958). The ten-twenty electrode system of the international federation. Electroencephalography and Clinical Neurophysiology 10, 371375.Google Scholar
Kalueff, AV, Nutt, DJ (2007). Role of GABA in anxiety and depression. Depression and Anxiety 24, 495517.CrossRefGoogle ScholarPubMed
Klengel, T, Heck, A, Pfister, H, Brückl, T, Hennings, JM, Menke, A, Czamara, D, Müller-Myhsok, B, Ising, M (2011). Somatization in major depression – clinical features and genetic associations. Acta Psychiatrica Scandinavica 124, 317328.CrossRefGoogle ScholarPubMed
Lang, AP, de Angelis, L (2003). Experimental anxiety and antiepileptics: the effects of valproate and vigabatrin in the mirrored chamber test. Methods and Findings in Experimental and Clinical Pharmacology 25, 265271.CrossRefGoogle ScholarPubMed
Leppänen, JM (2006). Emotional information processing in mood disorders: a review of behavioral and neuroimaging findings. Current Opinion in Psychiatry 19, 3439.CrossRefGoogle ScholarPubMed
Luscher, B, Shen, Q, Sahir, N (2011). The GABAergic deficit hypothesis of major depressive disorder. Molecular Psychiatry 16, 383406.CrossRefGoogle ScholarPubMed
Miltner, W, Johnson, R, Braun, C, Larbig, W (1989). Somatosensory event-related potentials to painful and non-painful stimuli: effects of attention. Pain 38, 303312.CrossRefGoogle ScholarPubMed
Muthukumaraswamy, SD, Edden, RA, Jones, DK, Swettenham, JB, Singh, KD (2009). Resting GABA concentration predicts peak gamma frequency and fMRI amplitude in response to visual stimulation in humans. Proceedings of the National Academy of Science USA 106, 83568361.CrossRefGoogle ScholarPubMed
National Center for Biotechnology Information (1999). 3′ Untranslated regions (http://www.ncbi.nlm.nih.gov/mesh?term=3'%20untranslated%20regions). Accessed 6 July 2010.Google Scholar
Neto, FL, Ferreira-Gomes, J, Castro-Lopes, JM (2006). Distribution of GABA receptors in the thalamus and their involvement in nociception. Advances in Pharmacology 54, 2951.CrossRefGoogle ScholarPubMed
Northoff, G, Walter, M, Schulte, RF, Beck, J, Dydak, U, Henning, A, Boeker, H, Grimm, S, Boesiger, P (2007). GABA concentrations in the human anterior cingulate cortex predict negative BOLD responses in fMRI. Nature Neuroscience 10, 15151517.CrossRefGoogle ScholarPubMed
Ohayon, MM, Schatzberg, AF (2010). Chronic pain and major depressive disorder in the general population. Journal of Psychiatric Research 44, 454461.CrossRefGoogle ScholarPubMed
Ordway, GA, Klimek, V, Mann, JJ (2002). Neurocircuitry of mood disorders. In Neuropsychopharmacology: The Fifth Generation of Progress (ed. Davis, K. L., Charney, D., Coyle, J. T. and Nemeroff, C.), pp. 10511064. Lippincott Williams & Wilkins: Philadelphia.Google Scholar
Purcell, S, Neale, B, Todd-Brown, K, Thomas, L, Ferreira, MAR, Bender, D, Maller, J, Sklar, P, de Bakker, PIW, Daly, MJ, Sham, PC (2007). PLINK: a tool set for whole-genome association and population-based linkage analysis. American Journal of Human Genetics 81, 559575.CrossRefGoogle Scholar
Quintero, L, Cardenas, R, Suarez-Roca, H (2011). Stress-induced hyperalgesia is associated with a reduced and delayed GABA inhibitory control that enhances post-synaptic NMDA receptor activation in the spinal cord. Pain 152, 19091922.CrossRefGoogle ScholarPubMed
Rupniak, NMJ, Kramer, MS (2002). Substance P and related tachykinins. In Neuropsychopharmacology: The Fifth Generation of Progress (ed. Davis, K. L., Charney, D., Coyle, J. T. and Nemeroff, C.), pp. 169177. Lippincott Williams & Wilkins: Philadelphia.Google Scholar
Sanacora, G, Saricicek, A (2007). GABAergic contributions to the pathophysiology of depression and mechanism of antidepressant action. CNS and Neurological Disorders – Drug Targets 6, 127140.CrossRefGoogle Scholar
Sherif, FM, Ahmed, SS (1995). Basic aspects of GABA-transaminase in neuropsychiatric disorders. Clinical Biochemistry 28, 145154.CrossRefGoogle ScholarPubMed
Stranger, BE, Nica, AC, Forrest, MS, Dimas, A, Bird, CP, Beazley, C, Ingle, CE, Dunning, M, Flicek, P, Koller, D, Montgomery, S, Tavaré, S, Deloukas, P, Dermitzakis, ET (2007). Population genomics of human gene expression. Nature Genetics 39, 12171224.CrossRefGoogle ScholarPubMed
Sullivan, PF (2007). Spurious genetic associations. Biological Psychiatry 61, 11211126.CrossRefGoogle ScholarPubMed
The International HapMapConsortium (2003). The International HapMap Project. Nature 426, 789796.CrossRefGoogle Scholar
van Beijsterveldt, CEM, van Baal, GCM (2002). Twin and family studies of the human electroencephalogram: a review and a meta-analysis. Biological Psychology 61, 111138.CrossRefGoogle ScholarPubMed
von Zerssen, D (1976). The Complaint List. Beltz Test Gesellschaft: Weinheim.Google Scholar
Wang, N, Akey, JM, Zhang, K, Chakraborty, R, Jin, L (2002). Distribution of recombination crossovers and the origin of haplotype blocks: the interplay of population history, recombination, and mutation. American Journal of Human Genetics 71, 12271234.CrossRefGoogle ScholarPubMed
Wiech, K, Ploner, M, Tracey, I (2008). Neurocognitive aspects of pain perception. Trends in Cognitive Sciences 12, 306313.CrossRefGoogle ScholarPubMed
Wigginton, JE, Cutler, DJ, Abecasis, GR (2005). A note on exact tests of Hardy–Weinberg equilibrium. American Journal of Human Genetics 76, 887893.CrossRefGoogle ScholarPubMed
Wittchen, HU, Zaudig, M, Fydrich, T (1997). SCID. Structural Clinical Interview for DSM-IV. Axis I and II. Manual. Hogrefe: Göttingen.Google Scholar
Xie, Y, Huo, F, Tang, J (2009). Cerebral cortex modulation of pain. Acta Pharmacologica Sinica 30, 3141.CrossRefGoogle ScholarPubMed
Supplementary material: PDF

Wegerer Supplementary Table

Supplemental Online Table. SNP-characteristics and associations with SSEP parameters

Download Wegerer Supplementary Table(PDF)
PDF 20.8 KB