Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-24T12:05:04.917Z Has data issue: false hasContentIssue false

The relationship between physical activity, BMI, circadian rhythm, and sleep with cognition in bipolar disorder

Published online by Cambridge University Press:  29 June 2020

Jennifer L. Burgess*
Affiliation:
Academic Psychiatry Department, Campus of Ageing and Vitality, Westgate Road, Newcastle-upon-Tyne, NE4 6BE, UK
Andrew J. Bradley
Affiliation:
Academic Psychiatry Department, Campus of Ageing and Vitality, Westgate Road, Newcastle-upon-Tyne, NE4 6BE, UK
Kirstie N. Anderson
Affiliation:
Academic Psychiatry Department, Campus of Ageing and Vitality, Westgate Road, Newcastle-upon-Tyne, NE4 6BE, UK
P. Gallagher
Affiliation:
Academic Psychiatry Department, Campus of Ageing and Vitality, Westgate Road, Newcastle-upon-Tyne, NE4 6BE, UK
R. Hamish McAllister-Williams
Affiliation:
Academic Psychiatry Department, Campus of Ageing and Vitality, Westgate Road, Newcastle-upon-Tyne, NE4 6BE, UK
*
Author for correspondence: Jennifer L. Burgess, E-mail: [email protected]

Abstract

Background

Cognitive deficits affect a significant proportion of patients with bipolar disorder (BD). Problems with sustained attention have been found independent of mood state and the causes are unclear. We aimed to investigate whether physical parameters such as activity levels, sleep, and body mass index (BMI) may be contributing factors.

Methods

Forty-six patients with BD and 42 controls completed a battery of neuropsychological tests and wore a triaxial accelerometer for 21 days which collected information on physical activity, sleep, and circadian rhythm. Ex-Gaussian analyses were used to characterise reaction time distributions. We used hierarchical regression analyses to examine whether physical activity, BMI, circadian rhythm, and sleep predicted variance in the performance of cognitive tasks.

Results

Neither physical activity, BMI, nor circadian rhythm predicted significant variance on any of the cognitive tasks. However, the presence of a sleep abnormality significantly predicted a higher intra-individual variability of the reaction time distributions on the Attention Network Task.

Conclusions

This study suggests that there is an association between sleep abnormalities and cognition in BD, with little or no relationship with physical activity, BMI, and circadian rhythm.

Type
Original Article
Copyright
Copyright © The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barkin, S. L. (2013). The relationship between executive function and obesity in children and adolescents: A systematic literature review. Journal of Obesity, 2013, 820956.Google Scholar
Bolzenius, J. (2014) Structural and cognitive correlates of body mass index in healthy older adults.Dissertations, University of Missouri-St Louis, https://irl.umsl.edu/dissertation/231.Google Scholar
Bond, D. J., Torres, I. J., Lee, S. S., Kozicky, J.-M., Silveira, L. E., Dhanoa, T., … Yatham, L. N. (2017). Lower cognitive functioning as a predictor of weight gain in bipolar disorder: A 12-month study. Acta Psychiatrica Scandinavica, 135(3), 239249. doi: doi:10.1111/acps.12674CrossRefGoogle ScholarPubMed
Bora, E., McIntyre, R. S., & Ozerdem, A. (2018). Neurococognitive and neuroimaging correlates of obesity and components of metabolic syndrome in bipolar disorder: A systematic review. Psychological Medicine, 49, 112.Google ScholarPubMed
Bora, E., Yucel, M., & Pantelis, C. (2009). Cognitive endophenotypes of bipolar disorder: A meta-analysis of neuropsychological deficits in euthymic patients and their first-degree relatives. Journal of Affective Disorders, 113(1), 120. doi: https://doi.org/10.1016/j.jad.2008.06.009CrossRefGoogle ScholarPubMed
Bourne, C., Aydemir, Ö, Balanzá-Martínez, V., Bora, E., Brissos, S., Cavanagh, J., … Dittmann, S. (2013). Neuropsychological testing of cognitive impairment in euthymic bipolar disorder: An individual patient data meta-analysis. Acta Psychiatrica Scandinavica, 128(3), 149162.CrossRefGoogle ScholarPubMed
Bradley, A. J., Anderson, K. N., Gallagher, P., & McAllister-Williams, R. H. (2020). The association between sleep and cognitive abnormalities in bipolar disorder. Psychological Medicine, 50, 125132.CrossRefGoogle ScholarPubMed
Bradley, A. J., Webb-Mitchell, R., Hazu, A., Slater, N., Middleton, B., Gallagher, P., … Anderson, K. N. (2017). Sleep and circadian rhythm disturbance in bipolar disorder. Psychological Medicine, 47(9), 16781689.CrossRefGoogle ScholarPubMed
Burdick, K., Russo, M., Frangou, S., Mahon, K., Braga, R., Shanahan, M., & Malhotra, A. (2014). Empirical evidence for discrete neurocognitive subgroups in bipolar disorder: Clinical implications. Psychological Medicine, 44(14), 30833096.CrossRefGoogle ScholarPubMed
Carpenter, J. S., Robillard, R., Lee, R. S. C., Hermens, D. F., Naismith, S. L., White, D., … Hickie, I. B. (2015). The relationship between sleep-wake cycle and cognitive functioning in young people with affective disorders. PloS one, 10(4), e0124710e0124710. doi: 10.1371/journal.pone.0124710CrossRefGoogle ScholarPubMed
Chennaoui, M., Arnal, P. J., Sauvet, F., & Léger, D. (2015). Sleep and exercise: A reciprocal issue? Sleep Medicine Reviews, 20, 5972.CrossRefGoogle ScholarPubMed
Clark, L., Sarna, A., & Goodwin, G. M. (2005). Impairment of executive function but not memory in first-degree relatives of patients with bipolar I disorder and in euthymic patients with unipolar depression. American Journal of Psychiatry, 162(10), 19801982.CrossRefGoogle Scholar
Cotrena, C., Branco, L. D., Shansis, F. M., & Fonseca, R. P. (2016). Executive function impairments in depression and bipolar disorder: Association with functional impairment and quality of life. Journal of Affective Disorders, 190, 744753.CrossRefGoogle ScholarPubMed
Cournot, M., Marquie, J., Ansiau, D., Martinaud, C., Fonds, H., Ferrieres, J., & Ruidavets, J. (2006). Relation between body mass index and cognitive function in healthy middle-aged men and women. Neurology, 67(7), 12081214.CrossRefGoogle ScholarPubMed
Devita, M., Montemurro, S., Zangrossi, A., Ramponi, S., Marvisi, M., Villani, D., … Mondini, S. (2017). Cognitive and motor reaction times in obstructive sleep apnea syndrome: A study based on computerized measures. Brain and Cognition, 117, 2632. doi: 10.1016/j.bandc.2017.07.002CrossRefGoogle ScholarPubMed
Dickinson, T., Becerra, R., & Coombes, J. (2017). Executive functioning deficits among adults with bipolar disorder (types I and II): A systematic review and meta-analysis. Journal of Affective Disorders, 218, 407427.CrossRefGoogle ScholarPubMed
Dinges, D. F., & Powell, J. W. (1985). Microcomputer analyses of performance on a portable, simple visual RT task during sustained operations. Behavior Research Methods, Instruments, & Computers, 17(6), 652655.CrossRefGoogle Scholar
Douglas, K., Gallagher, P., Robinson, L., Carter, J., Vw McIntosh, V., Ma Frampton, C.. (2018). Prevalence of cognitive impairment in major depression and bipolar disorder. Bipolar Disorders, 20, 260274.CrossRefGoogle ScholarPubMed
Etnier, J. L., Nowell, P. M., Landers, D. M., & Sibley, B. A. (2006). A meta-regression to examine the relationship between aerobic fitness and cognitive performance. Brain Research Reviews, 52(1), 119130. doi: 10.1016/j.brainresrev.2006.01.002CrossRefGoogle ScholarPubMed
Fan, J., McCandliss, B. D., Sommer, T., Raz, A., & Posner, M. I. (2002). Testing the efficiency and independence of attentional networks. Journal of Cognitive Neuroscience, 14(3), 340347. doi: 10.1162/089892902317361886CrossRefGoogle ScholarPubMed
Fellendorf, F., Kainzbauer, N., Platzer, M., Dalkner, N., Bengesser, S., Birner, A., … Pilz, R. (2017). Gender differences in the association between physical activity and cognitive function in individuals with bipolar disorder. Journal of Affective Disorders, 221, 232237.CrossRefGoogle ScholarPubMed
Firth, Joseph, Stubbs, Brendon, Rosenbaum, Simon, Vancampfort, Davy, Malchow, Berend, Schuch, Felipe, & Elliott, Rebecca. (2017). Aerobic Exercise Improves Cognitive Functioning in People With Schizophrenia: A Systematic Review and Meta-Analysis. Schizophrenia Bulletin, 43, 546556.Google ScholarPubMed
Gallagher, P., Nilsson, J., Finkelmeyer, A., Goshawk, M., Macritchie, K. A., Lloyd, A. J., … Ferrier, I. N. (2015). Neurocognitive intra-individual variability in mood disorders: Effects on attentional response time distributions. Psychological Medicine, 45(14), 29852997.CrossRefGoogle ScholarPubMed
Hargens, T. A., Kaleth, A. S., Edwards, E. S., & Butner, K. L. (2013). Association between sleep disorders, obesity, and exercise: A review. Nature and Science of Sleep, 5, 2735. doi: 10.2147/NSS.S34838CrossRefGoogle ScholarPubMed
Iverson, G. L., Brooks, B. L., Langenecker, S. A., & Young, A. H. (2011). Identifying a cognitive impairment subgroup in adults with mood disorders. Journal of Affective Disorders, 132(3), 360367.CrossRefGoogle ScholarPubMed
Janney, C. A., Fagiolini, A., Swartz, H. A., Jakicic, J. M., Holleman, R. G., & Richardson, C. R. (2014). Are adults with bipolar disorder active? Objectively measured physical activity and sedentary behavior using accelerometry. Journal of Affective Disorders, 152, 498504.CrossRefGoogle ScholarPubMed
Jerome, G. J., Young, D. R., Dalcin, A., Charleston, J., Anthony, C., Hayes, J., & Daumit, G. L. (2009). Physical activity levels of persons with mental illness attending psychiatric rehabilitation programs. Schizophrenia Research, 108(1–3), 252257. doi: 10.1016/j.schres.2008.12.006CrossRefGoogle ScholarPubMed
Joy, S., Kaplan, E., & Fein, D. (2003). Digit symbol–incidental learning in the WAIS-III: Construct validity and clinical significance. The Clinical Neuropsychologist, 17(2), 182194.CrossRefGoogle ScholarPubMed
Kanady, J. C., Soehner, A. M., Klein, A. B., & Harvey, A. G. (2017). The association between insomnia-related sleep disruptions and cognitive dysfunction during the inter-episode phase of bipolar disorder. Journal of Psychiatric Research, 88, 8088.CrossRefGoogle ScholarPubMed
Kredlow, M. A., Capozzoli, M. C., Hearon, B. A., Calkins, A. W., & Otto, M. W. (2015). The effects of physical activity on sleep: A meta-analytic review. Journal of Behavioral Medicine, 38(3), 427449. doi: 10.1007/s10865-015-9617-6CrossRefGoogle ScholarPubMed
Kushida, Clete, Littner, Michael, Morgenthaler, Timothy, Alessi, Cathy, Bailey, Dennis, Coleman, Jack, … Wise, Merrill. (2005). Practice Parameters for the Indications for Polysomnography and Related Procedures: An Update for 2005. Sleep, 28, 499523.CrossRefGoogle ScholarPubMed
Lim, J., & Dinges, D. F. (2008). Sleep deprivation and vigilant attention. Annals of the New York Academy of Sciences, 1129(1), 305322.CrossRefGoogle ScholarPubMed
Lima, F., Rabelo-da-Ponte, F. D., Bücker, J., Czepielewski, L., Hasse-Sousa, M., Telesca, R., … Rosa, A. R. (2019). Identifying cognitive subgroups in bipolar disorder: A cluster analysis. Journal of Affective Disorders, 246, 252261. doi: https://doi.org/10.1016/j.jad.2018.12.044CrossRefGoogle ScholarPubMed
Loprinzi, P. D., & Cardinal, B. J. (2011). Association between objectively-measured physical activity and sleep, NHANES 2005–2006. Mental Health and Physical Activity, 4(2), 6569.CrossRefGoogle Scholar
Loree, A. M., Lundahl, L. H., & Ledgerwood, D. M. (2015). Impulsivity as a predictor of treatment outcome in substance use disorders: Review and synthesis. Drug and Alcohol Review, 34(2), 119134. doi: doi:10.1111/dar.12132CrossRefGoogle ScholarPubMed
Lyall, L. M., Wyse, C. A., Graham, N., Ferguson, A., Lyall, D. M., Cullen, B., … Smith, D. J. (2018). Association of disrupted circadian rhythmicity with mood disorders, subjective wellbeing, and cognitive function: A cross-sectional study of 91 105 participants from the UK Biobank. The Lancet Psychiatry, 5(6), 507514. doi: https://doi.org/10.1016/S2215-0366(18)30139-1CrossRefGoogle ScholarPubMed
McElroy, S. L., Kotwal, R., Malhotra, S., Nelson, E. B., Keck, P. E. Jr., & Nemeroff, C. B. (2004). Are mood disorders and obesity related? A review for the mental health professional. The Journal of Clinical Psychiatry, 65, 634651.CrossRefGoogle ScholarPubMed
Melo, M. C. A., Daher, E. D. F., Albuquerque, S. G. C., & de Bruin, V. M. S. (2016). Exercise in bipolar patients: A systematic review. Journal of Affective Disorders, 198, 3238.CrossRefGoogle ScholarPubMed
Metcalfe, A. W. S., MacIntosh, B. J., Scavone, A., Ou, X., Korczak, D., & Goldstein, B. I. (2016). Effects of acute aerobic exercise on neural correlates of attention and inhibition in adolescents with bipolar disorder. Translational Psychiatry, 6(5), e814.CrossRefGoogle ScholarPubMed
Michalak, E. E., Murray, G., & BD, C. (2010). Development of the QoL. BD: A disorder-specific scale to assess quality of life in bipolar disorder. Bipolar Disorders, 12(7), 727740.CrossRefGoogle ScholarPubMed
Olaithe, M., Bucks, R. S., Hillman, D. R., & Eastwood, P. R. (2018). Cognitive deficits in obstructive sleep apnea: Insights from a meta-review and comparison with deficits observed in COPD, insomnia, and sleep deprivation. Sleep Medicine Reviews, 38, 3949. doi: https://doi.org/10.1016/j.smrv.2017.03.005CrossRefGoogle ScholarPubMed
Pietiläinen, K. H., Kaprio, J., Borg, P., Plasqui, G., Yki-Järvinen, H., Kujala, U. M., … Rissanen, A. (2008). Physical inactivity and obesity: A vicious circle. Obesity (Silver Spring, Md.), 16(2), 409414. doi: 10.1038/oby.2007.72CrossRefGoogle ScholarPubMed
Porter, R. J., Robinson, L. J., Malhi, G. S., & Gallagher, P. (2015). The neurocognitive profile of mood disorders – a review of the evidence and methodological issues. Bipolar Disorders, 17(S2), 2140. doi: 10.1111/bdi.12342CrossRefGoogle ScholarPubMed
Robbins, T. W., James, M., Owen, A. M., Sahakian, B. J., McInnes, L., & Rabbitt, P. (1994). Cambridge Neuropsychological Test Automated Battery (CANTAB): A factor analytic study of a large sample of normal elderly volunteers. Dementia and Geriatric Cognitive Disorders, 5(5), 266281.CrossRefGoogle ScholarPubMed
Robillard, R., Hermens, D. F., Lee, R. S., Jones, A., Carpenter, J. S., White, D., … Scott, E. M. (2016). Sleep–wake profiles predict longitudinal changes in manic symptoms and memory in young people with mood disorders. Journal of Sleep Research, 25(5), 549555.CrossRefGoogle ScholarPubMed
Robinson, L. J., Thompson, J. M., Gallagher, P., Goswami, U., Young, A. H., Ferrier, I. N., & Moore, P. B. (2006). A meta-analysis of cognitive deficits in euthymic patients with bipolar disorder. Journal of Affective Disorders, 93(1-3), 105115.CrossRefGoogle ScholarPubMed
Rosa, A. R., Sánchez-Moreno, J., Martínez-Aran, A., Salamero, M., Torrent, C., Reinares, M., … Ayuso-Mateos, J. L. (2007). Validity and reliability of the Functioning Assessment Short Test (FAST) in bipolar disorder. Clinical Practice and Epidemiology in Mental Health, 3(1), 5.CrossRefGoogle Scholar
Russo, M., Mahon, K., Shanahan, M., Ramjas, E., Solon, C., Purcell, S. M., & Burdick, K. E. (2015). The relationship between sleep quality and neurocognition in bipolar disorder. Journal of Affective Disorders, 187, 156162.CrossRefGoogle ScholarPubMed
Sheffield, J. M., Karcher, N. R., & Barch, D. M. (2018). Cognitive deficits in psychotic disorders: A lifespan perspective. Neuropsychology Review, 28, 509533.CrossRefGoogle ScholarPubMed
Siervo, M., Arnold, R., Wells, J., Tagliabue, A., Colantuoni, A., Albanese, E., … Stephan, B. (2011). Intentional weight loss in overweight and obese individuals and cognitive function: A systematic review and meta-analysis. Obesity Reviews, 12(11), 968983.CrossRefGoogle ScholarPubMed
Smith, P. J., Blumenthal, J. A., Hoffman, B. M., Cooper, H., Strauman, T. A., Welsh-Bohmer, K., … Sherwood, A. (2010). Aerobic exercise and neurocognitive performance: A meta-analytic review of randomized controlled trials. Psychosomatic Medicine, 72(3), 239252. doi: 10.1097/PSY.0b013e3181d14633CrossRefGoogle ScholarPubMed
Swagerman, S. C., de Geus, E. J. C., Koenis, M. M. G., Hulshoff Pol, H. E., Boomsma, D. I., & Kan, K.-J. (2015). Domain dependent associations between cognitive functioning and regular voluntary exercise behavior. Brain and Cognition, 97, 3239. doi: https://doi.org/10.1016/j.bandc.2015.04.001CrossRefGoogle ScholarPubMed
Takaesu, Y., Inoue, Y., Murakoshi, A., Komada, Y., Otsuka, A., Futenma, K., & Inoue, T. (2016). Prevalence of circadian rhythm sleep-wake disorders and associated factors in euthymic patients with bipolar disorder. PloS one, 11(7), e0159578e0159578. doi: 10.1371/journal.pone.0159578CrossRefGoogle ScholarPubMed
Tan, X., Alen, M., Cheng, S. M., Mikkola, T. M., Tenhunen, J., Lyytikainen, A., … Cheng, S. (2015). Associations of disordered sleep with body fat distribution, physical activity and diet among overweight middle-aged men. Journal of Sleep Research, 24(4), 414424. doi: 10.1111/jsr.12283CrossRefGoogle ScholarPubMed
Thomas, P., He, F., Mazumdar, S., Wood, J., Bhatia, T., Gur, R. C., … Deshpande, S. N. (2018). Joint analysis of cognitive and circadian variation in schizophrenia and bipolar I disorder. Asian Journal of Psychiatry, 38, 96101.CrossRefGoogle ScholarPubMed
Thomson, D., Turner, A., Lauder, S., Gigler, M. E., Berk, L., Singh, A. B., … Sylvia, L. (2015). A brief review of exercise, bipolar disorder, and mechanistic pathways. Frontiers in Psychology, 6, 147.CrossRefGoogle ScholarPubMed
Vancampfort, D., Correll, C. U., Probst, M., Sienaert, P., Wyckaert, S., De Herdt, A., … De Hert, M. (2013). A review of physical activity correlates in patients with bipolar disorder. Journal of Affective Disorders, 145(3), 285291.CrossRefGoogle ScholarPubMed
Vancampfort, D., Firth, J., Schuch, F., Rosenbaum, S., De Hert, M., Mugisha, J., … Stubbs, B. (2016a). Physical activity and sedentary behavior in people with bipolar disorder: A systematic review and meta-analysis. Journal of Affective Disorders, 201, 145152.CrossRefGoogle Scholar
Vancampfort, D., Sienaert, P., Wyckaert, S., De Hert, M., Stubbs, B., & Probst, M. (2016b). Sitting time, physical fitness impairments and metabolic abnormalities in people with bipolar disorder: An exploratory study. Psychiatry Research, 242, 712.CrossRefGoogle Scholar
van Hees, V., Fang, Z., Zhao, J., Heywood, J., Mirkes, E., Sabia, S., & Migueles, J. (2019). GGIR: Raw Accelerometer Data Analysis. Retrieved from https://CRAN.R-project.org/package=GGIRGoogle Scholar
Verburgh, L., Königs, M., Scherder, E. J. A., & Oosterlaan, J. (2014). Physical exercise and executive functions in preadolescent children, adolescents and young adults: A meta-analysis. Br J Sports Med, 48(12), 973979.CrossRefGoogle Scholar
Wechsler, D., & De Lemos, M. M. (1981). Wechsler adult intelligence scale-revised. New York: Psychological Corporation: Harcourt Brace Jovanovich.Google Scholar
Whelan, R. (2008). Effective Analysis of Reaction Time Data. Psychol Rec, 58, 475482.CrossRefGoogle Scholar
WHO. (2011). Global Recommendations on Physical Activity for Health 18–64 years old. Retrieved from https://www.who.int/dietphysicalactivity/physical-activity-recommendations-18-64years.pdfGoogle Scholar
Young, R. C., Biggs, J. T., Ziegler, V. E., & Meyer, D. A. (1978). A rating scale for mania: Reliability, validity and sensitivity. The British Journal of Psychiatry, 133(5), 429435.CrossRefGoogle ScholarPubMed