Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-14T06:41:10.037Z Has data issue: false hasContentIssue false

The effects of gender on grey matter abnormalities in major psychoses: a comparative voxelwise meta-analysis of schizophrenia and bipolar disorder

Published online by Cambridge University Press:  11 August 2011

E. Bora*
Affiliation:
Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, VIC, Australia
A. Fornito
Affiliation:
Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, VIC, Australia
M. Yücel
Affiliation:
Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, VIC, Australia Orygen Research Centre, Melbourne, VIC, Australia
C. Pantelis
Affiliation:
Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, VIC, Australia
*
*Address for correspondence: Dr E. Bora, Alan Gilbert Building NNF level 3, Carlton 3053, Australia. (Email: [email protected])

Abstract

Background

Recent evidence from genetic and familial studies revitalized the debate concerning the validity of the distinction between schizophrenia and bipolar disorder. Comparing brain imaging findings is an important avenue to examine similarities and differences and, therefore, the validity of the distinction between these conditions. However, in contrast to bipolar disorder, most patient samples in studies of schizophrenia are predominantly male. This a limiting factor for comparing schizophrenia and bipolar disorder since male gender is associated with more severe neurodevelopmental abnormalities, negative symptoms and cognitive deficits in schizophrenia.

Method

We used a coordinate-based meta-analysis technique to compare grey matter (GM) abnormalities in male-dominated schizophrenia, gender-balanced schizophrenia and bipolar disorder samples based on published voxel-based morphometry (VBM) studies. In total, 72 English-language, peer reviewed articles published prior to January 2011 were included. All reports used VBM for comparing schizophrenia or bipolar disorder with controls and reported whole-brain analyses in standard stereotactic space.

Results

GM reductions were more extensive in male-dominated schizophrenia compared to gender-balanced bipolar disorder and schizophrenia. In gender-balanced samples, GM reductions were less severe. Compared to controls, GM reductions were restricted to dorsal anterior cingulate cortex (ACC) and dorsolateral prefrontal cortex in schizophrenia and ACC and bilateral fronto-insular cortex in bipolar disorder.

Conclusions

When gender is controlled, GM abnormalities in bipolar disorder and schizophrenia are mostly restricted to regions that have a role in emotional and cognitive aspects of salience respectively. Dorsomedial and dorsolateral prefrontal cortex were the only regions that showed greater GM reductions in schizophrenia compared to bipolar disorder.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adler, CM, DelBello, MP, Jarvis, K, Levine, A, Adams, J, Strakowski, SM (2007). Voxel-based study of structural changes in first-episode patients with bipolar disorder. Biological Psychiatry 61, 776781.CrossRefGoogle ScholarPubMed
Adler, CM, Levine, AD, DelBello, MP, Strakowski, SM (2005). Changes in gray matter volume in patients with bipolar disorder. Biological Psychiatry 58, 151157.Google Scholar
Almeida, JR, Akkal, D, Hassel, S, Travis, MJ, Banihashemi, L, Kerr, N, Kupfer, DJ, Phillips, ML (2009). Reduced gray matter volume in ventral prefrontal cortex but not amygdala in bipolar disorder: significant effects of gender and trait anxiety. Psychiatry Research 171, 5468.CrossRefGoogle Scholar
Ananth, H, Popescu, I, Critchley, HD, Good, CD, Frackowiak, RS, Dolan, RJ (2002). Cortical and subcortical gray matter abnormalities in schizophrenia determined through structural magnetic resonance imaging with optimized volumetric voxel-based morphometry. American Journal of Psychiatry 159, 14971505.CrossRefGoogle ScholarPubMed
Andreasen, NC, Nopoulos, P, O'Leary, DS, Miller, DD, Wassink, T, Flaum, M (1999). Defining the phenotype of schizophrenia: cognitive dysmetria and its neural mechanism. Biological Psychiatry 46, 908920.CrossRefGoogle Scholar
Antonova, E, Kumari, V, Morris, R, Halari, R, Anilkumar, A, Mehrotra, R, Sharma, T (2005). The relationship of structural alterations to cognitive deficits in schizophrenia: a voxel-based morphometry study. Biological Psychiatry 58, 457467.CrossRefGoogle ScholarPubMed
Arnone, D, Cavanagh, J, Gerber, D, Lawrie, SM, Ebmeier, KP, McIntosh, AM (2009). Magnetic resonance imaging studies in bipolar disorder and schizophrenia: meta-analysis. British Journal of Psychiatry 195, 194201.CrossRefGoogle ScholarPubMed
Ashburner, J, Friston, KJ (2000). Voxel-based morphometry – the methods. Neuroimage 11, 805821.CrossRefGoogle ScholarPubMed
Baiano, M, David, A, Versace, A, Churchill, R, Balestrieri, M, Brambilla, P (2007). Anterior cingulate volumes in schizophrenia: a systematic review and a meta-analysis of MRI studies. Schizophrenia Research 93, 112.Google Scholar
Bassitt, DP, Neto, MR, de Castro, CC, Busatto, GF (2007). Insight and regional brain volumes in schizophrenia. European Archives of Psychiatry and Clinical Neuroscience 257, 5862.CrossRefGoogle ScholarPubMed
Bonilha, L, Molnar, C, Horner, MD, Anderson, B, Forster, L, George, MS, Nahas, Z (2008). Neurocognitive deficits and prefrontal cortical atrophy in patients with schizophrenia. Schizophrenia Research 101, 142151.CrossRefGoogle ScholarPubMed
Bora, E, Fornito, A, Radua, J, Walterfang, M, Seal, M, Wood, SJ, Yücel, M, Velakoulis, D, Pantelis, C (2011). Neuroanatomical abnormalities in schizophrenia: A multimodal voxelwise meta-analysis and meta-regression analysis. Schizophrenia Research 127, 4657.CrossRefGoogle ScholarPubMed
Bora, E, Fornito, A, Yücel, M, Pantelis, C (2009). Cognitive functioning in schizophrenia, schizoaffective disorder and affective psychoses: meta-analytic study. British Journal of Psychiatry 195, 475482.CrossRefGoogle ScholarPubMed
Bora, E, Fornito, A, Yücel, M, Pantelis, C (2010 a). Voxelwise meta-analysis of gray matter abnormalities in bipolar disorder. Biological Psychiatry 67, 10971105.CrossRefGoogle ScholarPubMed
Bora, E, Fornito, A, Yücel, M, Pantelis, C (2010 b). Cognitive impairment in schizophrenia and affective psychoses: implications for DSM-V criteria and beyond. Schizophrenia Bulletin 36, 3642.CrossRefGoogle ScholarPubMed
Borgwardt, SJ, Picchioni, MM, Ettinger, U, Toulopoulou, T, Murray, R, McGuire, PK (2010). Regional gray matter volume in monozygotic twins concordant and discordant for schizophrenia. Biological Psychiatry 67, 956964.CrossRefGoogle ScholarPubMed
Bose, SK, Mackinnon, T, Mehta, MA, Turkheimer, FE, Howes, OD, Selvaraj, S, Kempton, MJ, Grasby, PM (2009). The effect of ageing on grey and white matter reductions in schizophrenia. Schizophrenia Research 112, 7–13.CrossRefGoogle ScholarPubMed
Bruno, SD, Barker, GJ, Cercignani, M, Symms, M, Ron, MA (2004). A study of bipolar disorder using magnetization transfer imaging and voxel-based morphometry. Brain 127, 24332440.CrossRefGoogle ScholarPubMed
Caligiuri, MP, Brown, GG, Meloy, MJ, Eberson, S, Niculescu, AB, Lohr, JB (2006). Striatopallidal regulation of affect in bipolar disorder. Journal of Affective Disorders 91, 235242.CrossRefGoogle ScholarPubMed
Cascella, NG, Fieldstone, SC, Rao, VA, Pearlson, GD, Sawa, A, Schretlen, DJ (2010). Gray-matter abnormalities in deficit schizophrenia. Schizophrenia Research 120, 6370.CrossRefGoogle ScholarPubMed
Chakos, MH, Lieberman, JA, Bilder, RM, Borenstein, M, Lerner, G, Bogerts, B, Wu, H, Kinon, B, Ashtari, M (1994). Increase in caudate nuclei volumes of first-episode schizophrenic patients taking antipsychotic drugs. American Journal of Psychiatry 151, 14301436.Google ScholarPubMed
Chen, X, Wen, W, Malhi, GS, Ivanovski, B, Sachdev, PS (2007). Regional gray matter changes in bipolar disorder: a voxel-based morphometric study. Australian New Zealand Journal of Psychiatry 41, 327336.CrossRefGoogle ScholarPubMed
Chua, SE, Cheung, C, Cheung, V, Tsang, JT, Chen, EY, Wong, JC, Cheung, JP, Yip, L, Tai, KS, Suckling, J, McAlonan, GM (2007). Cerebral grey, white matter and csf in never-medicated, first-episode schizophrenia. Schizophrenia Research 89, 1221.Google Scholar
Cocchi, L, Walterfang, M, Testa, R, Wood, SJ, Seal, ML, Suckling, J, Takahashi, T, Proffitt, TM, Brewer, WJ, Adamson, C, Soulsby, B, Velakoulis, D, McGorry, PD, Pantelis, C (2009). Grey and white matter abnormalities are associated with impaired spatial working memory ability in first-episode schizophrenia. Schizophrenia Research 115, 163172.CrossRefGoogle ScholarPubMed
Cooke, MA, Fannon, D, Kuipers, E, Peters, E, Williams, SC, Kumari, V (2008). Neurological basis of poor insight in psychosis: a voxel-based MRI study. Schizophrenia Research 103, 4051.CrossRefGoogle ScholarPubMed
Craddock, N, Owen, MJ (2010). The Kraepelinian dichotomy – going, going … but still not gone. British Journal of Psychiatry 196, 9295.CrossRefGoogle Scholar
Cui, L, Li, M, Deng, W, Guo, W, Ma, X, Huang, C, Jiang, L, Wang, Y, Collier, DA, Gong, Q, Li, T (2011). Overlapping clusters of gray matter deficits in paranoid schizophrenia and psychotic bipolar mania with family history. Neuroscience Letters 489, 9498.CrossRefGoogle ScholarPubMed
Dickstein, DP, Milham, MP, Nugent, AC, Drevets, WC, Charney, DS, Pine, DS, Leibenluft, E (2005). Frontotemporal alterations in pediatric bipolar disorder: results of a voxel-based morphometry study. Archives of General Psychiatry 62, 734741.CrossRefGoogle ScholarPubMed
Di Martino, A, Shehzad, Z, Kelly, C, Roy, AK, Gee, DG, Uddin, LQ, Gotimer, K, Klein, DF, Castellanos, FX, Milham, MP (2009). Relationship between cingulo-insular functional connectivity and autistic traits in neurotypical adults. American Journal of Psychiatry 166, 891899.CrossRefGoogle ScholarPubMed
Doris, A, Belton, E, Ebmeier, KP, Glabus, MF, Marshall, I (2004). Reduction of cingulated gray matter density in poor outcome bipolar illness. Psychiatry Research 130, 153159.CrossRefGoogle ScholarPubMed
Ellison-Wright, I, Bullmore, E (2010). Anatomy of bipolar disorder and schizophrenia: a meta-analysis. Schizophrenia Research 117, 112.CrossRefGoogle ScholarPubMed
Farrow, TF, Whitford, TJ, Williams, LM, Gomes, L, Harris, AW (2005). Diagnosis-related regional gray matter loss over two years in first episode schizophrenia and bipolar disorder. Biological Psychiatry 58, 713723.Google Scholar
Fombonne, E (2003). Epidemiological surveys of autism and other pervasive developmental disorders: an update. Journal of Autism and Developmental Disorders 33, 365382.Google Scholar
Fornito, A, Malhi, GS, Lagopoulos, J, Ivanovski, B, Wood, SJ, Saling, MM, Pantelis, C, Yucel, M (2008 a). Anatomical abnormalities of the anterior cingulate and paracingulate cortex in patients with bipolar I disorder. Psychiatry Research 162, 123132.CrossRefGoogle ScholarPubMed
Fornito, A, Yücel, M, Patti, J, Wood, SJ, Pantelis, C (2009). Mapping grey matter reductions in schizophrenia: an anatomical likelihood estimation analysis of voxel-based morphometry studies. Schizophrenia Research 108, 104113.CrossRefGoogle ScholarPubMed
Fornito, A, Yucel, M, Wood, SJ, Adamson, C, Velakoulis, D, Saling, MM, McGorry, PD, Pantelis, C (2008 b). Surface-based morphometry of the anterior cingulate cortex in first episode schizophrenia. Human Brain Mapping 29, 478489.CrossRefGoogle ScholarPubMed
García-Martí, G, Aguilar, EJ, Lull, JJ, Martí-Bonmatí, L, Escartí, MJ, Manjón, JV, Moratal, D, Robles, M, Sanjuán, J (2008). Schizophrenia with auditory hallucinations: a voxel-based morphometry study. Progress in Neuropsychopharmacology and Biological Psychiatry 32, 7280.Google Scholar
Giuliani, NR, Calhoun, VD, Pearlson, GD, Francis, A, Buchanan, RW (2005). Voxel-based morphometry versus region of interest: a comparison of two methods for analyzing gray matter differences in schizophrenia. Schizophrenia Research 74, 135147.Google Scholar
Glahn, DC, Laird, AR, Ellison-Wright, I, Thelen, SM, Robinson, JL, Lancaster, JL, Bullmore, E, Fox, PT (2008). Meta-analysis of gray matter anomalies in schizophrenia: application of anatomic likelihood estimation and network analysis. Biological Psychiatry 64, 774781.Google Scholar
Good, CD, Johnsrude, IS, Ashburner, J, Henson, RN, Friston, KJ, Frackowiak, RS (2001). A voxel-based morphometric study of ageing in 465 normal adult human brains. Neuroimage 14, 2136.CrossRefGoogle ScholarPubMed
Grozeva, D, Kirov, G, Ivanov, D, Jones, IR, Jones, L, Green, EK, St Clair, DM, Young, AH, Ferrier, N, Farmer, AE, McGuffin, P, Holmans, PA, Owen, MJ, O'Donovan, MC, Craddock, N; Wellcome Trust Case Control Consortium (2010). Rare copy number variants: a point of rarity in genetic risk for bipolar disorder and schizophrenia. Archives General Psychiatry 67, 318327.CrossRefGoogle Scholar
Ha, TH, Ha, K, Kim, JH, Choi, JE (2009). Regional brain gray matter abnormalities in patients with bipolar II disorder: a comparison study with bipolar I patients and healthy controls. Neuroscience Letters 456, 4448.Google Scholar
Ha, TH, Youn, T, Ha, KS, Rho, KS, Lee, JM, Kim, IY, Kim, SI, Kwon, JS (2004). Gray matter abnormalities in paranoid schizophrenia and their clinical correlations. Psychiatry Research 132, 251260.CrossRefGoogle ScholarPubMed
Haldane, M, Cunningham, G, Androutsos, C, Frangou, S (2008). Structural brain correlates of response inhibition in Bipolar Disorder I. Journal of Psychopharmacology 22, 138143.CrossRefGoogle ScholarPubMed
Hallahan, B, Newell, J, Soares, JC, Brambilla, P, Strakowski, SM, Fleck, DE, Kieseppa, T, Altshuler, LL, Fornito, A, Malhi, GS, McIntosh, AM, Yurgelun-Todd, DA, Labar, KS, Sharma, V, Macqueen, GM, Murray, RM, McDonald, C (2011). Structural magnetic resonance imaging in bipolar disorder: an international collaborative mega-analysis of individual adult patient data. Biological Psychiatry 69, 326335.CrossRefGoogle ScholarPubMed
Handen, B (2007). Intellectual disability (mental retardation). In Assessment of Childhood Disorders, 4th edn. (ed. Mash, E. and Barkley, R.), pp. 551580. Guilford Press: New York.Google Scholar
Herold, R, Feldmann, A, Simon, M, Tényi, T, Kövér, F, Nagy, F, Varga, E, Fekete, S (2009). Regional gray matter reduction and theory of mind deficit in the early phase of schizophrenia: a voxel-based morphometric study. Acta Psychiatrica Scandanivica 119, 199208.CrossRefGoogle ScholarPubMed
Honea, RA, Meyer-Lindenberg, A, Hobbs, KB, Pezawas, L, Mattay, VS, Egan, MF, Verchinski, B, Passingham, RE, Weinberger, DR, Callicott, JH (2008). Is gray matter volume an intermediate phenotype for schizophrenia? A voxel based morphometry study of patients with schizophrenia and their healthy siblings. Biological Psychiatry 63, 465474.CrossRefGoogle ScholarPubMed
Horn, H, Federspiel, A, Wirth, M, Müller, TJ, Wiest, R, Walther, S, Strik, W (2010). Gray matter volume differences specific to formal thought disorder in schizophrenia. Psychiatry Research 182, 183186.Google Scholar
Hulshoff Pol, HE, Schnack, HG, Mandl, RC, van Haren, NE, Koning, H, Collins, DL, Evans, AC, Kahn, RS (2001). Focal gray matter density changes in schizophrenia. Archives of General Psychiatry 58, 11181125.CrossRefGoogle ScholarPubMed
Janssen, J, Reig, S, Parellada, M, Moreno, D, Graell, M, Fraguas, D, Zabala, A, Garcia Vazquez, V, Desco, M, Arango, C (2008). Regional gray matter volume deficits in adolescents with first-episode psychosis. Journal of American Academy and Child Adolescent Psychiatry 47, 13111320.CrossRefGoogle ScholarPubMed
Job, DE, Whalley, HC, McConnell, S, Glabus, M, Johnstone, EC, Lawrie, SM (2002). Structural gray matter differences between first-episode schizophrenics and normal controls using voxel-based morphometry. Neuroimage 17, 880889.Google Scholar
Kaspárek, T, Prikryl, R, Mikl, M, Schwarz, D, Cesková, E, Krupa, P (2007). Prefrontal but not temporal grey matter changes in males with first-episode schizophrenia. Progress in Neuropsychopharmacology and Biological Psychiatry 31, 151157.Google Scholar
Kawada, R, Yoshizumi, M, Hirao, K, Fujiwara, H, Miyata, J, Shimizu, M, Namiki, C, Sawamoto, N, Fukuyama, H, Hayashi, T, Murai, T (2009). Brain volume and dysexecutive behavior in schizophrenia. Progress in Neuropsychopharmacology and Biological Psychiatry 33, 12551260.Google Scholar
Kempton, MJ, Haldane, M, Jogia, J, Grasby, PM, Collier, D, Frangou, S (2009). Dissociable brain structural changes associated with predisposition, resilience, and disease expression in bipolar disorder. Journal of Neuroscience 29, 1086310868.CrossRefGoogle ScholarPubMed
Kirkpatrick, B, Buchanan, RW, Ross, DE, Carpenter, WT Jr. (2001). A separate disease within the syndrome of schizophrenia. Archives of General Psychiatry 58, 165171.Google Scholar
Konick, LC, Friedman, L (2001). Meta-analysis of thalamic size in schizophrenia. Biological Psychiatry 49, 2838.CrossRefGoogle ScholarPubMed
Koutsouleris, N, Gaser, C, Jäger, M, Bottlender, R, Frodl, T, Holzinger, S, Schmitt, GJ, Zetzsche, T, Burgermeister, B, Scheuerecker, J, Born, C, Reiser, M, Möller, HJ, Meisenzahl, EM (2008). Structural correlates of psychopathological symptom dimensions in schizophrenia: a voxel-based morphometric study. Neuroimage 39, 16001612.Google Scholar
Kubicki, M, Shenton, ME, Salisbury, DF, Hirayasu, Y, Kasai, K, Kikinis, R, Jolesz, FA, McCarley, RW (2002). Voxel-based morphometric analysis of gray matter in first episode schizophrenia. Neuroimage 17, 17111719.Google Scholar
Leung, A, Chue, P (2000). Sex differences in schizophrenia, a review of the literature. Acta Psychiatrica Scandanivica (Suppl.) 401, 338.CrossRefGoogle ScholarPubMed
Lichtenstein, P, Yip, BH, Björk, C, Pawitan, Y, Cannon, TD, Sullivan, PF, Hultman, CM (2009). Common genetic determinants of schizophrenia and bipolar disorder in Swedish families: a population-based study. Lancet 373, 234239.Google Scholar
Lochhead, RA, Parsey, RV, Oquendo, MA, Mann, JJ (2004). Regional brain gray matter volume differences in patients with bipolar disorder as assessed by optimized voxel-based morphometry. Biological Psychiatry 55, 11541162.Google Scholar
Lui, S, Deng, W, Huang, X, Jiang, L, Ma, X, Chen, H, Zhang, T, Li, X, Li, D, Zou, L, Tang, H, Zhou, JX, Mechelli, A, Collier, DA, Sweeney, JA, Li, T, Gong, Q (2009). Association of cerebral deficits with clinical symptoms in antipsychotic-naive first-episode schizophrenia: an optimized voxel-based morphometry and resting state functional connectivity study. American Journal of Psychiatry 166, 196205.Google Scholar
Lyoo, IK, Kim, MJ, Stoll, AL, Demopulos, CM, Parow, AM, Dager, SR, Friedman, SD, Dunner, DL, Renshaw, PF (2004). Frontal lobe gray matter density decreases in bipolar I disorder. Biological Psychiatry 55, 648651.Google Scholar
McDonald, C, Bullmore, E, Sham, P, Chitnis, X, Suckling, J, MacCabe, J, Walshe, M, Murray, RM (2005). Regional volume deviations of brain structure in schizophrenia and psychotic bipolar disorder: computational morphometry study. British Journal of Psychiatry 186, 369377.Google Scholar
McGlashan, TH, Fenton, WS (1992). The positive-negative distinction in schizophrenia. Review of natural history validators. Archives of General Psychiatry 49, 6372.Google Scholar
McIntosh, AM, Job, DE, Moorhead, TW, Harrison, LK, Forrester, K, Lawrie, SM, Johnstone, EC (2004). Voxel-based morphometry of patients with schizophrenia or bipolar disorder and their unaffected relatives. Biological Psychiatry 56, 544552.Google Scholar
Marcelis, M, Suckling, J, Woodruff, P, Hofman, P, Bullmore, E, van Os, J (2003). Searching for a structural endophenotype in psychosis using computational morphometry. Psychiatry Research 122, 153167.Google Scholar
Meda, SA, Giuliani, NR, Calhoun, VD, Jagannathan, K, Schretlen, DJ, Pulver, A, Cascella, N, Keshavan, M, Kates, W, Buchanan, R, Sharma, T, Pearlson, GD (2008). A large scale (N=400) investigation of gray matter differences in schizophrenia using optimized voxel-based morphometry. Schizophrenia Research 101, 95–105.CrossRefGoogle ScholarPubMed
Mitelman, SA, Buchsbaum, MS (2007). Very poor outcome schizophrenia: clinical and neuroimaging aspects. International Review of Psychiatry 19, 345357.Google Scholar
Moher, D, Liberati, A, Tetzlaff, J, Altman, DG; PRISMA Group (2009). Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. British Medical Journal 339, b2535.Google Scholar
Molina, V, Galindo, G, Cortés, B, de Herrera, AG, Ledo, A, Sanz, J, Montes, C, Hernández-Tamames, JA (2010 a). Different gray matter patterns in chronic schizophrenia and chronic bipolar disorder patients identified using voxel-based morphometry. European Archives of Psychiatry and Clinical Neuroscience. Published online 28 December 2010. doi:10.1007/s00406-010-0183-1.Google ScholarPubMed
Molina, V, Hernández, JA, Sanz, J, Paniagua, JC, Hernandez, AI, Martin, C, Matias, J, Calama, J, Bote, B (2010 b). Subcortical and cortical gray matter differences between kraepelinian and non-kraepelinian schizophrenia patients identified using voxel based morphometry. Psychiatry Research: Neuroimaging 184, 1622.Google Scholar
Molina, V, Sanz, J, Villa, R, Pérez, J, González, D, Sarramea, F, Ballesteros, A, Galindo, G, Hernández, JA (2010 c). Voxel-based morphometry comparison between first episodes of psychosis with and without evolution to schizophrenia. Psychiatry Research 181, 204210.CrossRefGoogle ScholarPubMed
Moore, GJ, Cortese, BM, Glitz, DA, Zajac-Benitez, C, Quiroz, JA, Uhde, TW, Drevets, WC, Manji, HK (2009). A longitudinal study of the effects of lithium treatment on prefrontal and subgenual prefrontal gray matter volume in treatment-responsive bipolar disorder patients. Journal of Clinical Psychiatry 70, 699705.Google Scholar
Moorhead, TW, Job, DE, Whalley, HC, Sanderson, TL, Johnstone, EC, Lawrie, SM (2004). Voxel-based morphometry of comorbid schizophrenia and learning disability: analyses in normalized and native spaces using parametric and nonparametric statistical methods. Neuroimage 22, 188202.Google Scholar
Morgan, KD, Dazzan, P, Orr, KG, Hutchinson, G, Chitnis, X, Suckling, J, Lythgoe, D, Pollock, SJ, Rossell, S, Shapleske, J, Fearon, P, Morgan, C, David, A, McGuire, PK, Jones, PB, Leff, J, Murray, RM (2007). Grey matter abnormalities in first-episode schizophrenia and affective psychosis. British Journal of Psychiatry (Suppl.) 51, s111s116.Google Scholar
Moriya, J, Kakeda, S, Abe, O, Goto, N, Yoshimura, R, Hori, H, Ohnari, N, Sato, T, Aoki, S, Ohtomo, K, Nakamura, J, Korogi, Y (2010). Gray and white matter volumetric and diffusion tensor imaging (DTI). Analyses in the early stage of first-episode schizophrenia. Schizophrenia Research 116, 196203.CrossRefGoogle ScholarPubMed
Narita, K, Takei, Y, Suda, M, Aoyama, Y, Uehara, T, Kosaka, H, Amanuma, M, Fukuda, M, Mikuni, M (2010). Relationship of parental bonding styles with gray matter volume of dorsolateral prefrontal cortex in young adults. Progress in Neuropsychopharmacology and Biological Psychiatry 34, 624631.CrossRefGoogle ScholarPubMed
Neckelmann, G, Specht, K, Lund, A, Ersland, L, Smievoll, AI, Neckelmann, D, Hugdahl, K (2006). MR morphometry analysis of grey matter volume reduction in schizophrenia: association with hallucinations. International Journal of Neuroscience 116, 9–23.CrossRefGoogle ScholarPubMed
Nelson, MD, Saykin, AJ, Flashman, LA, Riordan, HJ (1998). Hippocampal volume reduction in schizophrenia as assessed by magnetic resonance imaging: a meta-analytic study. Archives of General Psychiatry 55, 433440.CrossRefGoogle ScholarPubMed
Nugent, AC, Milham, MP, Bain, EE, Mah, L, Cannon, DM, Marrett, S, Zarate, CA, Pine, DS, Price, JL, Drevets, WC (2006). Cortical abnormalities in bipolar disorder investigated with MRI and voxel-based morphometry. Neuroimage 30, 485497.Google Scholar
O'Daly, OG, Frangou, S, Chitnis, X, Shergill, SS (2001). Brain structural changes in schizophrenia patients with persistent hallucinations. Psychiatry Research 156, 1521.Google Scholar
Owen, MJ, Craddock, N, Jablensky, A (2007). The genetic deconstruction of psychosis. Schizophrenia Bulletin 33, 905911.Google Scholar
Paillère-Martinot, M, Caclin, A, Artiges, E, Poline, JB, Joliot, M, Mallet, L, Recasens, C, Attar-Lévy, D, Martinot, JL (2001). Cerebral gray and white matter reductions and clinical correlates in patients with early onset schizophrenia. Schizophrenia Research 50, 1926.CrossRefGoogle ScholarPubMed
Plaze, M, Paillère-Martinot, ML, Penttilä, J, Januel, D, de Beaurepaire, R, Bellivier, F, Andoh, J, Galinowski, A, Gallarda, T, Artiges, E, Olié, JP, Mangin, JF, Martinot, JL, Cachia, A (2011). Where do auditory hallucinations come from? A brain morphometry study of schizophrenia patients with inner or outer space hallucinations. Schizophrenia Bulletin 37, 212221.Google Scholar
Pantelis, C, Barnes, TRE, Nelson, HE (1992). Is the concept of frontal–subcortical dementia relevant to schizophrenia? British Journal of Psychiatry 160, 442460.Google Scholar
Pantelis, C, Barnes, TR, Nelson, HE, Tanner, S, Weatherley, L, Owen, AM, Robbins, TW (1997). Frontal-striatal cognitive deficits in patients with chronic schizophrenia. Brain 120, 18231843.Google Scholar
Pomarol-Clotet, E, Canales-Rodríguez, EJ, Salvador, R, Sarró, S, Gomar, JJ, Vila, F, Ortiz-Gil, J, Iturria-Medina, Y, Capdevila, A, McKenna, PJ (2010). Medial prefrontal cortex pathology in schizophrenia as revealed by convergent findings from multimodal imaging. Molecular Psychiatry 15, 823830.Google Scholar
Price, G, Cercignani, M, Chu, EM, Barnes, TR, Barker, GJ, Joyce, EM, Ron, MA (2010). Brain pathology in first-episode psychosis: magnetization transfer imaging provides additional information to MRI measurements of volume loss. Neuroimage 49, 185192.Google Scholar
Radua, J, Mataix-Cols, D (2009). Voxel-wise meta-analysis of grey matter changes in obsessive-compulsive disorder. British Journal of Psychiatry 195, 393402.Google Scholar
Radua, J, van den Heuvel, OA, Surguladze, S, Mataix-Cols, D (2010). Is OCD an anxiety disorder? A meta-analytical comparison of voxel-based morphometry studies in OCD vs. other anxiety disorders. Archives of General Psychiatry 67, 701711.CrossRefGoogle ScholarPubMed
Salgado-Pineda, P, Baeza, I, Pérez-Gómez, M, Vendrell, P, Junqué, C, Bargalló, N, Bernardo, M (2003). Sustained attention impairment correlates to gray matter decreases in first episode neuroleptic-naive schizophrenic patients. Neuroimage 19, 365375.Google Scholar
Salgado-Pineda, P, Junqué, C, Vendrell, P, Baeza, I, Bargalló, N, Falcón, C, Bernardo, M (2004). Decreased cerebral activation during CPT performance: structural and functional deficits in schizophrenic patients. Neuroimage 21, 840847.Google Scholar
Scherk, H, Kemmer, C, Usher, J, Reith, W, Falkai, P, Gruber, O (2008). No change to grey and white matter volumes in bipolar I disorder patients. European Archives of Psychiatry and Clinical Neuroscience 258, 345349.Google Scholar
Schiffer, W, Müller, BW, Scherbaum, N, Forsting, M, Wiltfang, J, Leygraf, N, Gizewski, ER (2010). Impulsivity-related brain volume deficits in schizophrenia-addiction comorbidity. Brain 133, 30933103.CrossRefGoogle ScholarPubMed
Segall, JM, Turner, JA, van Erp, TG, White, T, Bockholt, HJ, Gollub, RL, Ho, BC, Magnotta, V, Jung, RE, McCarley, RW, Schulz, SC, Lauriello, J, Clark, VP, Voyvodic, J, Diaz, MT, Calhoun, VD (2009). Voxel-based morphometric multisite collaborative study on schizophrenia. Schizophrenia Bulletin 35, 8295.Google Scholar
Shapleske, J, Rossell, SL, Chitnis, XA, Suckling, J, Simmons, A, Bullmore, ET, Woodruff, PW, David, AS (2002). A computational morphometric MRI study of schizophrenia: effects of hallucinations. Cerebral Cortex 12, 13311341.Google Scholar
Sigmundsson, T, Suckling, J, Maier, M, Williams, S, Bullmore, E, Greenwood, K, Fukuda, R, Ron, M, Toone, B (2001). Structural abnormalities in frontal, temporal, and limbic regions and interconnecting white matter tracts in schizophrenic patients with prominent negative symptoms. American Journal of Psychiatry 158, 234243.Google Scholar
Sridharan, D, Levitin, DJ, Menon, V (2008). A critical role for the right fronto-insular cortex in switching between central-executive and default-mode networks. Processings of the National Academy of Sciences USA 105, 1256912574.Google Scholar
Stanfield, AC, Moorhead, TW, Job, DE, McKirdy, J, Sussmann, JE, Hall, J, Giles, S, Johnstone, EC, Lawrie, SM, McIntosh, AM (2009). Structural abnormalities of ventrolateral and orbitofrontal cortex in patients with familial bipolar disorder. Bipolar Disorders 11, 135144.CrossRefGoogle ScholarPubMed
Steen, RG, Mull, C, McClure, R, Hamer, RM, Lieberman, JA (2006). Brain volume in first-episode schizophrenia: systematic review and meta-analysis of magnetic resonance imaging studies. British Journal of Psychiatry 188, 510518.CrossRefGoogle ScholarPubMed
Sun, J, Maller, JJ, Guo, L, Fitzgerald, PB (2009). Superior temporal gyrus volume change in schizophrenia: a review on region of interest volumetric studies. Brain Research Reviews 61, 1432.Google Scholar
Suzuki, M, Nohara, S, Hagino, H, Kurokawa, K, Yotsutsuji, T, Kawasaki, Y, Takahashi, T, Matsui, M, Watanabe, N, Seto, H, Kurachi, M (2002). Regional changes in brain gray and white matter in patients with schizophrenia demonstrated with voxel-based analysis of MRI. Schizophrenia Research 55, 4154.Google Scholar
Takahashi, T, Malhi, GS, Wood, SJ, Walterfang, M, Yücel, M, Lorenzetti, V, Soulsby, B, Suzuki, M, Velakoulis, D, Pantelis, C (2009 a). Increased pituitary volume in patients with established bipolar affective disorder. Progress in Neuropsychopharmacology and Biological Psychiatry 33, 12451249.CrossRefGoogle ScholarPubMed
Takahashi, T, Wood, SJ, Soulsby, B, Kawasaki, Y, McGorry, PD, Suzuki, M, Velakoulis, D, Pantelis, C (2009 b). An MRI study of the superior temporal subregions in first-episode patients with various psychotic disorders. Schizophrenia Research 113, 158166.Google Scholar
Takahashi, T, Wood, SJ, Soulsby, B, McGorry, PD, Tanino, R, Suzuki, M, Velakoulis, D, Pantelis, C (2009 c). Follow-up MRI study of the insular cortex in first-episode psychosis and chronic schizophrenia. Schizophrenia Research 108, 4956.CrossRefGoogle ScholarPubMed
Tanskanen, P, Ridler, K, Murray, GK, Haapea, M, Veijola, JM, Jääskeläinen, E, Miettunen, J, Jones, PB, Bullmore, ET, Isohanni, MK (2010). Morphometric brain abnormalities in schizophrenia in a population-based sample: relationship to duration of illness. Schizophrenia Bulletin 36, 766777.CrossRefGoogle Scholar
Taylor, KS, Seminowicz, DA, Davis, KD (2009). Two systems of resting state connectivity between the insula and cingulate cortex. Human Brain Mapping 30, 27312745.Google Scholar
Tomelleri, L, Jogia, J, Perlini, C, Bellani, M, Ferro, A, Rambaldelli, G, Tansella, M, Frangou, S, Brambilla, P; Neuroimaging Network of the ECNP Networks Initiative (2009). Brain structural changes associated with chronicity and antipsychotic treatment in schizophrenia. European Neuropsychopharmacology 19, 835840.Google Scholar
Tost, H, Ruf, M, Schmäl, C, Schulze, TG, Knorr, C, Vollmert, C, Bösshenz, K, Ende, G, Meyer-Lindenberg, A, Henn, FA, Rietschel, M (2010). Prefrontal-temporal gray matter deficits in bipolar disorder patients with persecutory delusions. Journal of Affective Disorders 120, 5461.Google Scholar
Tregellas, JR, Shatti, S, Tanabe, JL, Martin, LF, Gibson, L, Wylie, K, Rojas, DC (2007). Gray matter volume differences and the effects of smoking on gray matter in schizophrenia. Schizophrenia Research 97, 242249.CrossRefGoogle ScholarPubMed
Venkatasubramanian, G, Jayakumar, PN, Gangadhar, BN, Keshavan, MS (2008). Neuroanatomical correlates of neurological soft signs in antipsychotic-naive schizophrenia. Psychiatry Research 164, 215222.Google Scholar
White, TP, Joseph, V, Francis, ST, Liddle, PF (2010). Aberrant salience network (bilateral insula and anterior cingulate cortex). Connectivity during information processing in schizophrenia. Schizophrenia Research 123, 105115.CrossRefGoogle ScholarPubMed
Whitford, TJ, Grieve, SM, Farrow, TF, Gomes, L, Brennan, J, Harris, AW, Gordon, E, Williams, LM (2006). Progressive grey matter atrophy over the first 2–3 years of illness in first-episode schizophrenia: a tensor-based morphometry study. NeuroImage 32, 511519.Google Scholar
Wilke, M, Kaufmann, C, Grabner, A, Putz, B, Wetter, TC, Auer, DP (2001). Gray matter changes and correlates of disease severity in schizophrenia: a statistical parametric mapping study. NeuroImage 13, 814824.Google Scholar
Witthaus, H, Kaufmann, C, Bohner, G, Ozgürdal, S, Gudlowski, Y, Gallinat, J, Ruhrmann, S, Brüne, M, Heinz, A, Klingebiel, R, Juckel, G (2009). Gray matter abnormalities in subjects at ultra-high risk for schizophrenia and first-episode schizophrenic patients compared to healthy controls. Psychiatry Research 173, 163169.Google Scholar
Wright, IC, Ellison, ZR, Sharma, T, Friston, KJ, Murray, RM, McGuire, PK (1999). Mapping of grey matter changes in schizophrenia. Schizophrenia Research 35, 114.Google Scholar
Yatham, LN, Lyoo, IK, Liddle, P, Renshaw, PF, Wan, D, Lam, RW, Hwang, J (2007). A magnetic resonance imaging study of mood stabilizer- and neuroleptic-naïve first-episode mania. Bipolar Disorders 9, 693697.Google Scholar
Yu, K, Cheung, C, Leung, M, Li, Q, Chua, S, McAlonan, G (2010). Are bipolar disorder and schizophrenia neuroanatomically distinct? An anatomical likelihood meta-analysis. Frontiers in Human Neuroscience 4, 189.Google Scholar
Supplementary material: File

Bora Supplementary Figure

Supplementary Fig. 1. Flow diagram for meta-analysis of voxelwise gray matter studies in schizophrenia and bipolar disorder

Download Bora Supplementary Figure(File)
File 32.8 KB