Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-30T19:35:06.528Z Has data issue: false hasContentIssue false

Differential sensitivity to the acute psychotomimetic effects of delta-9-tetrahydrocannabinol associated with its differential acute effects on glial function and cortisol

Published online by Cambridge University Press:  27 October 2020

Marco Colizzi
Affiliation:
National Institute for Health Research (NIHR) Biomedical Research Centre, South London and Maudsley NHS Foundation Trust, and Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK Section of Psychiatry, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Italy
Nathalie Weltens
Affiliation:
Laboratory for Brain-Gut Axis Studies (LaBGAS), Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Chronic Diseases, Metabolism and Ageing, University of Leuven, Belgium
David J Lythgoe
Affiliation:
Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
Steve CR Williams
Affiliation:
Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
Lukas Van Oudenhove
Affiliation:
Laboratory for Brain-Gut Axis Studies (LaBGAS), Translational Research Center for Gastrointestinal Disorders (TARGID), Department of Chronic Diseases, Metabolism and Ageing, University of Leuven, Belgium
Sagnik Bhattacharyya*
Affiliation:
National Institute for Health Research (NIHR) Biomedical Research Centre, South London and Maudsley NHS Foundation Trust, and Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
*
Author for correspondence: Sagnik Bhattacharyya, E-mail: [email protected]

Abstract

Background

Cannabis use has been associated with psychosis through exposure to delta-9-tetrahydrocannabinol (Δ9-THC), its key psychoactive ingredient. Although preclinical and human evidence suggests that Δ9-THC acutely modulates glial function and hypothalamic-pituitary-adrenal (HPA) axis activity, whether differential sensitivity to the acute psychotomimetic effects of Δ9-THC is associated with differential effects of Δ9-THC on glial function and HPA-axis response has never been tested.

Methods

A double-blind, randomized, placebo-controlled, crossover study investigated whether sensitivity to the psychotomimetic effects of Δ9-THC moderates the acute effects of a single Δ9-THC dose (1.19 mg/2 ml) on myo-inositol levels, a surrogate marker of glia, in the Anterior Cingulate Cortex (ACC), and circadian cortisol levels, the key neuroendocrine marker of the HPA-axis, in a set of 16 healthy participants (seven males) with modest previous cannabis exposure.

Results

The Δ9-THC-induced change in ACC myo-inositol levels differed significantly between those sensitive to (Δ9-THC minus placebo; M = −0.251, s.d. = 1.242) and those not sensitive (M = 1.615, s.d. = 1.753) to the psychotomimetic effects of the drug (t(14) = 2.459, p = 0.028). Further, the Δ9-THC-induced change in cortisol levels over the study period (baseline minus 2.5 h post-drug injection) differed significantly between those sensitive to (Δ9-THC minus placebo; M = −275.4, s.d. = 207.519) and those not sensitive (M = 74.2, s.d. = 209.281) to the psychotomimetic effects of the drug (t(13) = 3.068, p = 0.009). Specifically, Δ9-THC exposure lowered ACC myo-inositol levels and disrupted the physiological diurnal cortisol decrease only in those subjects developing transient psychosis-like symptoms.

Conclusions

The interindividual differences in transient psychosis-like effects of Δ9-THC are the result of its differential impact on glial function and stress response.

Type
Original Article
Copyright
Copyright © The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Appiah-Kusi, E., Leyden, E., Parmar, S., Mondelli, V., McGuire, P., & Bhattacharyya, S. (2016). Abnormalities in neuroendocrine stress response in psychosis: The role of endocannabinoids. Psychological Medicine, 46(1), 2745. doi: 10.1017/S0033291715001786CrossRefGoogle ScholarPubMed
Appiah-Kusi, E., Petros, N., Wilson, R., Colizzi, M., Bossong, M. G., Valmaggia, L., … Bhattacharyya, S. (2020). Effects of short-term cannabidiol treatment on response to social stress in subjects at clinical high risk of developing psychosis. Psychopharmacology (Berl), 237(4), 11211130. doi: 10.1007/s00213-019-05442-6.CrossRefGoogle ScholarPubMed
Autry, A. E., Grillo, C. A., Piroli, G. G., Rothstein, J. D., McEwen, B. S., & Reagan, L. P. (2006). Glucocorticoid regulation of GLT-1 glutamate transporter isoform expression in the rat hippocampus. Neuroendocrinology, 83(5–6), 371379. doi: 10.1159/000096092CrossRefGoogle ScholarPubMed
Baggio, S., Deline, S., Studer, J., Mohler-Kuo, M., Daeppen, J. B., & Gmel, G. (2014). Routes of administration of cannabis used for nonmedical purposes and associations with patterns of drug use. Journal of Adolescent Health, 54(2), 235240. doi: 10.1016/j.jadohealth.2013.08.013CrossRefGoogle ScholarPubMed
Bhattacharyya, S., Atakan, Z., Martin-Santos, R., Crippa, J. A., Kambeitz, J., Prata, D., … McGuire, P. K. (2012). Preliminary report of biological basis of sensitivity to the effects of cannabis on psychosis: AKT1 and DAT1 genotype modulates the effects of delta-9-tetrahydrocannabinol on midbrain and striatal function. Molecular Psychiatry, 17(12), 11521155. doi: 10.1038/mp.2011.187CrossRefGoogle Scholar
Bhattacharyya, S., Sainsbury, T., Allen, P., Nosarti, C., Atakan, Z., Giampietro, V., … McGuire, P. K. (2018). Increased hippocampal engagement during learning as a marker of sensitivity to psychotomimetic effects of delta-9-THC. Psychological Medicine, 48(16), 27482756. doi: 10.1017/S0033291718000387.CrossRefGoogle ScholarPubMed
Blest-Hopley, G., O'Neill, A., Wilson, R., Giampietro, V., Lythgoe, D., Egerton, A., & Bhattacharyya, S. (2019). Adolescent-onset heavy cannabis use associated with significantly reduced glial but not neuronal markers and glutamate levels in the hippocampus. Addiction Biology, e12827. doi: 10.1111/adb.12827Google Scholar
Bonnefil, V., Dietz, K., Amatruda, M., Wentling, M., Aubry, A. V., Dupree, J. L., … Liu, J. (2019). Region-specific myelin differences define behavioral consequences of chronic social defeat stress in mice. Elife, 8, e40855. doi: 10.7554/eLife.40855.CrossRefGoogle ScholarPubMed
Borges, S., Gayer-Anderson, C., & Mondelli, V. (2013). A systematic review of the activity of the hypothalamic-pituitary-adrenal axis in first episode psychosis. Psychoneuroendocrinology, 38(5), 603611. doi: 10.1016/j.psyneuen.2012.12.025CrossRefGoogle ScholarPubMed
Chen, R., Zhang, J., Fan, N., Teng, Z. Q., Wu, Y., Yang, H., … Chen, C. (2013). Delta9-THC-caused synaptic and memory impairments are mediated through COX-2 signaling. Cell, 155(5), 11541165. doi: 10.1016/j.cell.2013.10.042CrossRefGoogle ScholarPubMed
Colizzi, M., & Bhattacharyya, S. (2018). Neurocognitive effects of cannabis: Lessons learned from human experimental studies. Progress in Brain Research, 242, 179216. doi: 10.1016/bs.pbr.2018.08.010CrossRefGoogle ScholarPubMed
Colizzi, M., & Bhattacharyya, S. (2020). Is there sufficient evidence that cannabis use is a risk factor for psychosis? In Thompson, A. D., & Broome, M. R. (Eds.), Risk factors for psychosis: Paradigms, mechanisms, and prevention (pp. 305331). Cambridge, Massachusetts: Academic Press.CrossRefGoogle Scholar
Colizzi, M., McGuire, P., Pertwee, R. G., & Bhattacharyya, S. (2016). Effect of cannabis on glutamate signalling in the brain: A systematic review of human and animal evidence. Neuroscience and Biobehavioral Reviews, 64, 359381. doi: 10.1016/j.neubiorev.2016.03.010CrossRefGoogle ScholarPubMed
Colizzi, M., Weltens, N., McGuire, P., Lythgoe, D., Williams, S., Van Oudenhove, L., & Bhattacharyya, S. (2019a). Delta-9-tetrahydrocannabinol increases striatal glutamate levels in healthy individuals: Implications for psychosis. Molecular Psychiatry. doi: 10.1038/s41380-019-0374-8Google Scholar
Colizzi, M., Weltens, N., McGuire, P., Van Oudenhove, L., & Bhattacharyya, S. (2019b). Descriptive psychopathology of the acute effects of intravenous Delta-9-tetrahydrocannabinol administration in humans. Brain Sciences, 9(4). doi: 10.3390/brainsci9040093CrossRefGoogle Scholar
Conrad, C. D. (2006). What is the functional significance of chronic stress-induced CA3 dendritic retraction within the hippocampus? Behavioral and Cognitive Neuroscience Reviews, 5(1), 4160. doi: 10.1177/1534582306289043CrossRefGoogle ScholarPubMed
Cservenka, A., Lahanas, S., & Dotson-Bossert, J. (2018). Marijuana Use and hypothalamic-pituitary-adrenal axis functioning in humans. Frontiers in Psychiatry, 9, 472. doi: 10.3389/fpsyt.2018.00472CrossRefGoogle ScholarPubMed
Czéh, B., Müller-Keuker, J. I., Rygula, R., Abumaria, N., Hiemke, C., Domenici, E., & Fuchs, E. (2007). Chronic social stress inhibits cell proliferation in the adult medial prefrontal cortex: Hemispheric asymmetry and reversal by fluoxetine treatment. Neuropsychopharmacology, 32(7), 14901503. doi: 10.1038/sj.npp.1301275CrossRefGoogle ScholarPubMed
Das, T. K., Dey, A., Sabesan, P., Javadzadeh, A., Théberge, J., Radua, J., & Palaniyappan, L. (2018). Putative astroglial dysfunction in schizophrenia: A meta-analysis of. Frontiers in Psychiatry, 9, 438. doi: 10.3389/fpsyt.2018.00438.CrossRefGoogle ScholarPubMed
Di, S., Malcher-Lopes, R., Halmos, K. C., & Tasker, J. G. (2003). Nongenomic glucocorticoid inhibition via endocannabinoid release in the hypothalamus: A fast feedback mechanism. Journal of Neuroscience, 23(12), 48504857.CrossRefGoogle ScholarPubMed
Di, S., Malcher-Lopes, R., Marcheselli, V. L., Bazan, N. G., & Tasker, J. G. (2005). Rapid glucocorticoid-mediated endocannabinoid release and opposing regulation of glutamate and gamma-aminobutyric acid inputs to hypothalamic magnocellular neurons. Endocrinology, 146(10), 42924301. doi: 10.1210/en.2005-0610CrossRefGoogle ScholarPubMed
D'Souza, D. C., Perry, E., MacDougall, L., Ammerman, Y., Cooper, T., Wu, Y. T., … Krystal, J. H. (2004). The psychotomimetic effects of intravenous delta-9-tetrahydrocannabinol in healthy individuals: Implications for psychosis. Neuropsychopharmacology, 29(8), 15581572. doi: 10.1038/sj.npp.1300496CrossRefGoogle Scholar
Fries, E., Dettenborn, L., & Kirschbaum, C. (2009). The cortisol awakening response (CAR): Facts and future directions. International Journal of Psychophysiology, 72(1), 6773. doi: 10.1016/j.ijpsycho.2008.03.014CrossRefGoogle ScholarPubMed
Fuchs, E., & Flügge, G. (2003). Chronic social stress: Effects on limbic brain structures. Physiology & Behavior, 79(3), 417427. doi: 10.1016/s0031-9384(03)00161-6CrossRefGoogle ScholarPubMed
Fulford, D., Pearson, R., Stuart, B. K., Fisher, M., Mathalon, D. H., Vinogradov, S., & Loewy, R. L. (2014). Symptom assessment in early psychosis: The use of well-established rating scales in clinical high-risk and recent-onset populations. Psychiatry Research, 220(3), 10771083. doi: 10.1016/j.psychres.2014.07.047CrossRefGoogle ScholarPubMed
Garcia-Segura, L. M., & McCarthy, M. M. (2004). Minireview: Role of glia in neuroendocrine function. Endocrinology, 145(3), 10821086. doi: 10.1210/en.2003-1383CrossRefGoogle ScholarPubMed
Gasparovic, C., Bedrick, E. J., Mayer, A. R., Yeo, R. A., Chen, H., Damaraju, E., … Jung, R. E. (2011). Test-retest reliability and reproducibility of short-echo-time spectroscopic imaging of human brain at 3 T. Magnetic Resonance in Medicine, 66(2), 324332. doi: 10.1002/mrm.22858CrossRefGoogle Scholar
Han, J., Kesner, P., Metna-Laurent, M., Duan, T., Xu, L., Georges, F., … Zhang, X. (2012). Acute cannabinoids impair working memory through astroglial CB1 receptor modulation of hippocampal LTD. Cell, 148(5), 10391050. doi: 10.1016/j.cell.2012.01.037CrossRefGoogle ScholarPubMed
Hillard, C. J., Beatka, M., & Sarvaideo, J. (2016). Endocannabinoid signaling and the hypothalamic-pituitary-adrenal axis. Comprehensive Physiology, 7(1), 115. doi: 10.1002/cphy.c160005Google ScholarPubMed
Hinwood, M., Morandini, J., Day, T. A., & Walker, F. R. (2012). Evidence that microglia mediate the neurobiological effects of chronic psychological stress on the medial prefrontal cortex. Cerebral Cortex, 22(6), 14421454. doi: 10.1093/cercor/bhr229CrossRefGoogle ScholarPubMed
Jauregui-Huerta, F., Ruvalcaba-Delgadillo, Y., Gonzalez-Castañeda, R., Garcia-Estrada, J., Gonzalez-Perez, O., & Luquin, S. (2010). Responses of glial cells to stress and glucocorticoids. Current Immunology Reviews, 6(3), 195204. doi: 10.2174/157339510791823790CrossRefGoogle ScholarPubMed
Kay, S. R., Fiszbein, A., & Opler, L. A. (1987). The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophrenia Bulletin, 13(2), 261276.CrossRefGoogle Scholar
Kelly, P., & Jones, R. T. (1992). Metabolism of tetrahydrocannabinol in frequent and infrequent marijuana users. Journal of Analytical Toxicology, 16(4), 228235.CrossRefGoogle ScholarPubMed
Kurosinski, P., & Götz, J. (2002). Glial cells under physiologic and pathologic conditions. Archives of Neurology, 59(10), 15241528. doi: 10.1001/archneur.59.10.1524CrossRefGoogle ScholarPubMed
Laskaris, L. E., Di Biase, M. A., Everall, I., Chana, G., Christopoulos, A., Skafidas, E., … Pantelis, C. (2016). Microglial activation and progressive brain changes in schizophrenia. British Journal of Pharmacology, 173(4), 666680. doi: 10.1111/bph.13364CrossRefGoogle Scholar
Li, C. T., Yang, K. C., & Lin, W. C. (2018). Glutamatergic dysfunction and glutamatergic compounds for Major psychiatric disorders: Evidence from clinical neuroimaging studies. Frontiers in Psychiatry, 9, 767. doi: 10.3389/fpsyt.2018.00767CrossRefGoogle ScholarPubMed
Lisman, J. E., Coyle, J. T., Green, R. W., Javitt, D. C., Benes, F. M., Heckers, S., & Grace, A. A. (2008). Circuit-based framework for understanding neurotransmitter and risk gene interactions in schizophrenia. Trends in Neurosciences, 31(5), 234242. doi: 10.1016/j.tins.2008.02.005CrossRefGoogle Scholar
Mason, N., Theunissen, E., Hutten, N., Tse, D., Toennes, S., Stiers, P., & Ramaekers, J. (2019). Cannabis induced increase in striatal glutamate associated with loss of functional corticostriatal connectivity. European Neuropsychopharmacology, 29(2), 247256. doi: 10.1016/j.euroneuro.2018.12.003CrossRefGoogle ScholarPubMed
Murphy-Royal, C., Gordon, G. R., & Bains, J. S. (2019). Stress-induced structural and functional modifications of astrocytes-further implicating glia in the central response to stress. Glia, 67(10), 18061820. doi: 10.1002/glia.23610Google ScholarPubMed
Pagotto, U., Marsicano, G., Cota, D., Lutz, B., & Pasquali, R. (2006). The emerging role of the endocannabinoid system in endocrine regulation and energy balance. Endocrine Reviews, 27(1), 73100. doi: 10.1210/er.2005-0009CrossRefGoogle ScholarPubMed
Pearson-Leary, J., Osborne, D. M., & McNay, E. C. (2015). Role of Glia in stress-induced enhancement and impairment of memory. Frontiers in Integrative Neuroscience, 9, 63. doi: 10.3389/fnint.2015.00063Google Scholar
Pertwee, R. G. (2008). The diverse CB1 and CB2 receptor pharmacology of three plant cannabinoids: Delta9-tetrahydrocannabinol, cannabidiol and delta9-tetrahydrocannabivarin. British Journal of Pharmacology, 153(2), 199215. doi: 10.1038/sj.bjp.0707442CrossRefGoogle ScholarPubMed
Prescot, A. P., Locatelli, A. E., Renshaw, P. F., & Yurgelun-Todd, D. A. (2011). Neurochemical alterations in adolescent chronic marijuana smokers: A proton MRS study. Neuroimage, 57(1), 6975. doi: 10.1016/j.neuroimage.2011.02.044CrossRefGoogle ScholarPubMed
Radhakrishnan, R., Wilkinson, S. T., & D'Souza, D. C. (2014). Gone to pot - a review of the association between cannabis and psychosis. Frontiers in Psychiatry, 5, 54. doi: 10.3389/fpsyt.2014.00054CrossRefGoogle Scholar
Ranganathan, M., Braley, G., Pittman, B., Cooper, T., Perry, E., Krystal, J., & D'Souza, D. C. (2009). The effects of cannabinoids on serum cortisol and prolactin in humans. Psychopharmacology (Berl), 203(4), 737744. doi: 10.1007/s00213-008-1422-2CrossRefGoogle ScholarPubMed
Reagan, L. P., Rosell, D. R., Wood, G. E., Spedding, M., Muñoz, C., Rothstein, J., & McEwen, B. S. (2004). Chronic restraint stress up-regulates GLT-1 mRNA and protein expression in the rat hippocampus: Reversal by tianeptine. Proceedings of the National Academy of Sciences of the United States of America, 101(7), 21792184. doi: 10.1073/pnas.0307294101CrossRefGoogle ScholarPubMed
Ritchie, L. J., De Butte, M., & Pappas, B. A. (2004). Chronic mild stress exacerbates the effects of permanent bilateral common carotid artery occlusion on CA1 neurons. Brain Research, 1014(1–2), 228235. doi: 10.1016/j.brainres.2004.04.036CrossRefGoogle ScholarPubMed
Rubino, T., Realini, N., Braida, D., Guidi, S., Capurro, V., Viganò, D., … Parolaro, D. (2009). Changes in hippocampal morphology and neuroplasticity induced by adolescent THC treatment are associated with cognitive impairment in adulthood. Hippocampus, 19(8), 763772. doi: 10.1002/hipo.20554CrossRefGoogle ScholarPubMed
Sami, M. B., Rabiner, E. A., & Bhattacharyya, S. (2015). Does cannabis affect dopaminergic signaling in the human brain? A systematic review of evidence to date. European Neuropsychopharmacology, 25(8), 12011224. doi: 10.1016/j.euroneuro.2015.03.011CrossRefGoogle Scholar
Schoeler, T., Monk, A., Sami, M. B., Klamerus, E., Foglia, E., Brown, R., … Bhattacharyya, S. (2016a). Continued versus discontinued cannabis use in patients with psychosis: A systematic review and meta-analysis. The Lancet. Psychiatry, 3(3), 215225. doi: 10.1016/S2215-0366(15)00363-6CrossRefGoogle Scholar
Schoeler, T., Petros, N., Di Forti, M., Pingault, J. B., Klamerus, E., Foglia, E., … Bhattacharyya, S. (2016b). Association between continued Cannabis use and risk of relapse in first-episode psychosis: A quasi-experimental investigation within an observational study. JAMA Psychiatry, 73(11), 11731179. doi: 10.1001/jamapsychiatry.2016.2427CrossRefGoogle Scholar
Stella, N. (2010). Cannabinoid and cannabinoid-like receptors in microglia, astrocytes, and astrocytomas. Glia, 58(9), 10171030. doi: 10.1002/glia.20983CrossRefGoogle ScholarPubMed
Szepesi, Z., Manouchehrian, O., Bachiller, S., & Deierborg, T. (2018). Bidirectional microglia-neuron communication in health and disease. Frontiers in Cellular Neuroscience, 12, 323. doi: 10.3389/fncel.2018.00323CrossRefGoogle ScholarPubMed
Vardimon, L., Ben-Dror, I., Avisar, N., Oren, A., & Shiftan, L. (1999). Glucocorticoid control of glial gene expression. Journal of Neurobiology, 40(4), 513527. doi: 10.1002/(sici)1097-4695(19990915)40:4<513::aid-neu8>3.0.co;2-d3.0.CO;2-D>CrossRefGoogle ScholarPubMed
Verkhratsky, A., Steardo, L., Parpura, V., & Montana, V. (2016). Translational potential of astrocytes in brain disorders. Progress in Neurobiology, 144, 188205. doi: 10.1016/j.pneurobio.2015.09.003CrossRefGoogle ScholarPubMed
Zschocke, J., Bayatti, N., Clement, A. M., Witan, H., Figiel, M., Engele, J., & Behl, C. (2005). Differential promotion of glutamate transporter expression and function by glucocorticoids in astrocytes from various brain regions. Journal of Biological Chemistry, 280(41), 3492434932. doi: 10.1074/jbc.M502581200CrossRefGoogle ScholarPubMed
Supplementary material: File

Colizzi et al. supplementary material

Colizzi et al. supplementary material

Download Colizzi et al. supplementary material(File)
File 24.7 KB