Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2025-01-04T09:15:35.493Z Has data issue: false hasContentIssue false

Decreased cortical gyrification in patients with bipolar disorder

Published online by Cambridge University Press:  16 November 2020

Kwan Woo Choi
Affiliation:
Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
Kyu-Man Han
Affiliation:
Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
Aram Kim
Affiliation:
Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
Wooyoung Kang
Affiliation:
Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
Youbin Kang
Affiliation:
Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
Woo-Suk Tae
Affiliation:
Brain Convergence Research Center, Korea University Anam Hospital, Seoul, Republic of Korea
Byung-Joo Ham*
Affiliation:
Department of Psychiatry, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea Brain Convergence Research Center, Korea University Anam Hospital, Seoul, Republic of Korea
*
Author for correspondence: Byung-Joo Ham, E-mail: [email protected]

Abstract

Background

An aberrant neural connectivity has been known to be associated with bipolar disorder (BD). Local gyrification may reflect the early neural development of cortical connectivity and has been studied as a possible endophenotype of psychiatric disorders. This study aimed to investigate differences in the local gyrification index (LGI) in each cortical region between patients with BD and healthy controls (HCs).

Methods

LGI values, as measured using FreeSurfer software, were compared between 61 patients with BD and 183 HCs. The values were also compared between patients with BD type I and type II as a sub-group analysis. Furthermore, we evaluated whether there was a correlation between LGI values and illness duration or depressive symptom severity in patients with BD.

Results

Patients with BD showed significant hypogyria in various cortical regions, including the left inferior frontal gyrus (pars opercularis), precentral gyrus, postcentral gyrus, superior temporal cortex, insula, right entorhinal cortex, and both transverse temporal cortices, compared to HCs after the Bonferroni correction (p < 0.05/66, 0.000758). LGI was not associated with clinical factors such as illness duration, depressive symptom severity, and lithium treatment. No significant differences in cortical gyrification according to the BD subtype were found.

Conclusions

BD appears to be characterized by a significant regionally localized hypogyria, in various cortical areas. This abnormality may be a structural and developmental endophenotype marking the risk for BD, and it might help to clarify the etiology of BD.

Type
Original Article
Copyright
Copyright © The Author(s) 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

These authors contributed equally to this article as co-first authors.

References

Adolphs, R. (2003). Cognitive neuroscience of human social behaviour. Nature Reviews Neuroscience, 4(3), 165178. doi: 10.1038/nrn1056.CrossRefGoogle ScholarPubMed
Alonso, J., Petukhova, M., Vilagut, G., Chatterji, S., Heeringa, S., Ustun, T. B., … Kessler, R. C. (2011). Days out of role due to common physical and mental conditions: Results from the WHO world mental health surveys. Molecular Psychiatry, 16(12), 12341246. doi: 10.1038/mp.2010.101.CrossRefGoogle ScholarPubMed
Altshuler, L. L., Bookheimer, S. Y., Townsend, J., Proenza, M. A., Eisenberger, N., Sabb, F., … Cohen, M. S. (2005). Blunted activation in orbitofrontal cortex during mania: A functional magnetic resonance imaging study. Biological Psychiatry, 58(10), 763769. doi: 10.1016/j.biopsych.2005.09.012.CrossRefGoogle ScholarPubMed
Angst, J., Azorin, J. M., Bowden, C. L., Perugi, G., Vieta, E., Gamma, A., … Group, B. S. (2011). Prevalence and characteristics of undiagnosed bipolar disorders in patients with a major depressive episode: The BRIDGE study. Archives of Genenral Psychiatry, 68(8), 791798. doi: 10.1001/archgenpsychiatry.2011.87.CrossRefGoogle ScholarPubMed
Barta, P. E., Pearlson, G. D., Powers, R. E., Richards, S. S., & Tune, L. E. (1990). Auditory hallucinations and smaller superior temporal gyral volume in schizophrenia. American Journal of Psychiatry, 147(11), 14571462. doi: 10.1176/ajp.147.11.1457.Google Scholar
Bearden, C. E., Thompson, P. M., Dalwani, M., Hayashi, K. M., Lee, A. D., Nicoletti, M., … Soares, J. C. (2007). Greater cortical gray matter density in lithium-treated patients with bipolar disorder. Biological Psychiatry, 62(1), 716. doi: 10.1016/j.biopsych.2006.10.027.CrossRefGoogle ScholarPubMed
Blumberg, H. P., Leung, H. C., Skudlarski, P., Lacadie, C. M., Fredericks, C. A., Harris, B. C., … Peterson, B. S. (2003). A functional magnetic resonance imaging study of bipolar disorder: State- and trait-related dysfunction in ventral prefrontal cortices. Archives of General Psychiatry, 60(6), 601609. doi: 10.1001/archpsyc.60.6.601.CrossRefGoogle ScholarPubMed
Blumberg, H. P., Stern, E., Martinez, D., Ricketts, S., de Asis, J., White, T., … Silbersweig, D. A. (2000). Increased anterior cingulate and caudate activity in bipolar mania. Biological Psychiatry, 48(11), 10451052. doi: 10.1016/s0006-3223(00)00962-8.CrossRefGoogle ScholarPubMed
Bortolato, B., Kohler, C. A., Evangelou, E., Leon-Caballero, J., Solmi, M., Stubbs, B., … Carvalho, A. F. (2017). Systematic assessment of environmental risk factors for bipolar disorder: An umbrella review of systematic reviews and meta-analyses. Bipolar Disorders, 19(2), 8496. doi: 10.1111/bdi.12490.CrossRefGoogle ScholarPubMed
Bourne, C., Aydemir, O., Balanza-Martinez, V., Bora, E., Brissos, S., Cavanagh, J. T., … Goodwin, G. M. (2013). Neuropsychological testing of cognitive impairment in euthymic bipolar disorder: An individual patient data meta-analysis. Acta Psychiatrica Scandinavica, 128(3), 149162. doi: 10.1111/acps.12133.CrossRefGoogle ScholarPubMed
Bowden, C. L. (2005). A different depression: Clinical distinctions between bipolar and unipolar depression. Journal of Affective Disorders, 84(2–3), 117125. doi: 10.1016/S0165-0327(03)00194-0.CrossRefGoogle ScholarPubMed
Bush, G., Luu, P., & Posner, M. I. (2000). Cognitive and emotional influences in anterior cingulate cortex. Trends in Cognitive Sciences, 4(6), 215222. doi: 10.1016/s1364-6613(00)01483-2.CrossRefGoogle ScholarPubMed
Cao, B., Mwangi, B., Passos, I. C., Wu, M. J., Keser, Z., Zunta-Soares, G. B., … Soares, J. C. (2017). Lifespan gyrification trajectories of human brain in healthy individuals and patients with Major psychiatric disorders. Scientific Reports, 7(1), 511. doi: 10.1038/s41598-017-00582-1.CrossRefGoogle ScholarPubMed
Chen, C. H., Suckling, J., Lennox, B. R., Ooi, C., & Bullmore, E. T. (2011). A quantitative meta-analysis of fMRI studies in bipolar disorder. Bipolar Disorders, 13(1), 115. doi: 10.1111/j.1399-5618.2011.00893.x.CrossRefGoogle ScholarPubMed
Deckersbach, T., Rauch, S. L., Buhlmann, U., Ostacher, M. J., Beucke, J. C., Nierenberg, A. A., … Dougherty, D. D. (2008). An fMRI investigation of working memory and sadness in females with bipolar disorder: A brief report. Bipolar Disorders, 10(8), 928942. doi: 10.1111/j.1399-5618.2008.00633.x.CrossRefGoogle ScholarPubMed
Desikan, R. S., Segonne, F., Fischl, B., Quinn, B. T., Dickerson, B. C., Blacker, D., … Killiany, R. J. (2006). An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage, 31(3), 968980. doi: 10.1016/j.neuroimage.2006.01.021.CrossRefGoogle ScholarPubMed
Dubois, J., Benders, M., Cachia, A., Lazeyras, F., Ha-Vinh Leuchter, R., Sizonenko, S. V., … Huppi, P. S. (2008). Mapping the early cortical folding process in the preterm newborn brain. Cerebral Cortex, 18(6), 14441454. doi: 10.1093/cercor/bhm180.CrossRefGoogle ScholarPubMed
Elvsashagen, T., Westlye, L. T., Boen, E., Hol, P. K., Andreassen, O. A., Boye, B., & Malt, U. F. (2013). Bipolar II disorder is associated with thinning of prefrontal and temporal cortices involved in affect regulation. Bipolar Disorders, 15(8), 855864. doi: 10.1111/bdi.12117.CrossRefGoogle ScholarPubMed
Foland-Ross, L. C., Thompson, P. M., Sugar, C. A., Madsen, S. K., Shen, J. K., Penfold, C., … Altshuler, L. L. (2011). Investigation of cortical thickness abnormalities in lithium-free adults with bipolar I disorder using cortical pattern matching. American Journal of Psychiatry, 168(5), 530539. doi: 10.1176/appi.ajp.2010.10060896.CrossRefGoogle ScholarPubMed
Fornito, A., Malhi, G. S., Lagopoulos, J., Ivanovski, B., Wood, S. J., Saling, M. M., … Yucel, M. (2008). Anatomical abnormalities of the anterior cingulate and paracingulate cortex in patients with bipolar I disorder. Psychiatry Research, 162(2), 123132. doi: 10.1016/j.pscychresns.2007.06.004.CrossRefGoogle ScholarPubMed
Fuchs, E., & Flugge, G. (2014). Adult neuroplasticity: More than 40 years of research. Neural Plasticity, 2014, 541870. doi: 10.1155/2014/541870.CrossRefGoogle ScholarPubMed
Ghaemi, S. N., & Dalley, S. (2014). The bipolar spectrum: Conceptions and misconceptions. Australian & New Zealand Journal of Psychiatry, 48(4), 314324. http://dx.doi.org/10.1177/0004867413504830.CrossRefGoogle ScholarPubMed
Ghaemi, S. N., Sachs, G. S., Chiou, A. M., Pandurangi, A. K., & Goodwin, K. (1999). Is bipolar disorder still underdiagnosed? Are antidepressants overutilized? Journal of Affective Disorders, 52(1–3), 135144. doi: 10.1016/s0165-0327(98)00076-7.CrossRefGoogle ScholarPubMed
Gonda, X., Pompili, M., Serafini, G., Montebovi, F., Campi, S., Dome, P., … Rihmer, Z. (2012). Suicidal behavior in bipolar disorder: Epidemiology, characteristics and major risk factors. Journal of Affective Disorders, 143(1–3), 1626. doi: 10.1016/j.jad.2012.04.041.CrossRefGoogle ScholarPubMed
Grande, I., Magalhaes, P. V., Chendo, I., Stertz, L., Panizutti, B., Colpo, G. D., … Vieta, E. (2014). Staging bipolar disorder: Clinical, biochemical, and functional correlates. Acta Psychiatrica Scandinavica, 129(6), 437444. doi: 10.1111/acps.12268.CrossRefGoogle ScholarPubMed
Griffiths, T. D., & Warren, J. D. (2002). The planum temporale as a computational hub. Trends in Neurosciences, 25(7), 348353. doi: 10.1016/s0166-2236(02)02191-4.CrossRefGoogle ScholarPubMed
Hamilton, M. (1960). A rating scale for depression. Journal of Neurololgy, Neurosurgery and Psychiatry, 23, 5662. doi: 10.1136/jnnp.23.1.56.CrossRefGoogle ScholarPubMed
Han, K. M., Choi, S., Jung, J., Na, K. S., Yoon, H. K., Lee, M. S., & Ham, B. J. (2014). Cortical thickness, cortical and subcortical volume, and white matter integrity in patients with their first episode of major depression. Journal of Affective Disorders, 155, 4248. doi: 10.1016/j.jad.2013.10.021.CrossRefGoogle ScholarPubMed
Han, K. M., Won, E., Kang, J., Kim, A., Yoon, H. K., Chang, H. S., … Ham, B. J. (2017a). Local gyrification index in patients with major depressive disorder and its association with tryptophan hydroxylase-2 (TPH2) polymorphism. Human Brain Mapping, 38(3), 12991310. doi: 10.1002/hbm.23455.CrossRefGoogle Scholar
Han, K. M., Won, E., Sim, Y., Kang, J., Han, C., Kim, Y. K., … Ham, B. J. (2017b). Influence of FKBP5 polymorphism and DNA methylation on structural changes of the brain in major depressive disorder. Scientific Reports, 7, 42621. doi: 10.1038/srep42621.CrossRefGoogle Scholar
Hanford, L. C., Nazarov, A., Hall, G. B., & Sassi, R. B. (2016). Cortical thickness in bipolar disorder: A systematic review. Bipolar Disorders, 18(1), 418. doi: 10.1111/bdi.12362.CrossRefGoogle ScholarPubMed
Hartberg, C. B., Sundet, K., Rimol, L. M., Haukvik, U. K., Lange, E. H., Nesvag, R., … Agartz, I. (2011). Brain cortical thickness and surface area correlates of neurocognitive performance in patients with schizophrenia, bipolar disorder, and healthy adults. Journal of the International Neuropsychological Society, 17(6), 10801093. doi: 10.1017/S1355617711001081.CrossRefGoogle ScholarPubMed
Hibar, D. P., Westlye, L. T., Doan, N. T., Jahanshad, N., Cheung, J. W., Ching, C. R. K., … Andreassen, O. A. (2018). Cortical abnormalities in bipolar disorder: An MRI analysis of 6503 individuals from the ENIGMA bipolar disorder working group. Molecular Psychiatry, 23(4), 932942. doi: 10.1038/mp.2017.73.CrossRefGoogle ScholarPubMed
Hibar, D. P., Westlye, L. T., van Erp, T. G., Rasmussen, J., Leonardo, C. D., Faskowitz, J., … Andreassen, O. A. (2016). Subcortical volumetric abnormalities in bipolar disorder. Molecular Psychiatry, 21(12), 17101716. doi: 10.1038/mp.2015.227.CrossRefGoogle ScholarPubMed
Hilgetag, C. C., & Barbas, H. (2005). Developmental mechanics of the primate cerebral cortex. Anatomy and Embryology (Berlin), 210(5–6), 411417. doi: 10.1007/s00429-005-0041-5.CrossRefGoogle ScholarPubMed
Hirschfeld, R. M., Cass, A. R., Holt, D. C., & Carlson, C. A. (2005). Screening for bipolar disorder in patients treated for depression in a family medicine clinic. Journal of the American Board of Family Practice, 18(4), 233239. doi: 10.3122/jabfm.18.4.233.CrossRefGoogle Scholar
Hirschfeld, R. M., Lewis, L., & Vornik, L. A. (2003). Perceptions and impact of bipolar disorder: How far have we really come? Results of the national depressive and manic-depressive association 2000 survey of individuals with bipolar disorder. Journal of Clinical Psychiatry, 64(2), 161174.10.4088/JCP.v64n0209CrossRefGoogle ScholarPubMed
Janssen, J., Aleman-Gomez, Y., Schnack, H., Balaban, E., Pina-Camacho, L., Alfaro-Almagro, F., … Desco, M. (2014). Cortical morphology of adolescents with bipolar disorder and with schizophrenia. Schizophrenia Research, 158(1–3), 9199. doi: 10.1016/j.schres.2014.06.040.CrossRefGoogle ScholarPubMed
Kapczinski, F., Dias, V. V., Kauer-Sant'Anna, M., Frey, B. N., Grassi-Oliveira, R., Colom, F., & Berk, M. (2009). Clinical implications of a staging model for bipolar disorders. Expert Review of Neurotherapeutics, 9(7), 957966. doi: 10.1586/ern.09.31.CrossRefGoogle ScholarPubMed
Kapczinski, F., Magalhaes, P. V., Balanza-Martinez, V., Dias, V. V., Frangou, S., Gama, C. S., … Berk, M. (2014). Staging systems in bipolar disorder: An international society for bipolar disorders task force report. Acta Psychiatrica Scandinavica, 130(5), 354363. doi: 10.1111/acps.12305.CrossRefGoogle ScholarPubMed
Kelly, P. A., Viding, E., Wallace, G. L., Schaer, M., De Brito, S. A., Robustelli, B., & McCrory, E. J. (2013). Cortical thickness, surface area, and gyrification abnormalities in children exposed to maltreatment: Neural markers of vulnerability? Biological Psychiatry, 74(11), 845852. doi: 10.1016/j.biopsych.2013.06.020.CrossRefGoogle ScholarPubMed
Kilbourne, A. M., Cornelius, J. R., Han, X., Pincus, H. A., Shad, M., Salloum, I., … Haas, G. L. (2004). Burden of general medical conditions among individuals with bipolar disorder. Bipolar Disorders, 6(5), 368373. doi: 10.1111/j.1399-5618.2004.00138.x.CrossRefGoogle ScholarPubMed
Kwon, J. S., McCarley, R. W., Hirayasu, Y., Anderson, J. E., Fischer, I. A., Kikinis, R., … Shenton, M. E. (1999). Left planum temporale volume reduction in schizophrenia. Archives of General Psychiatry, 56(2), 142148. doi: 10.1001/archpsyc.56.2.142.CrossRefGoogle Scholar
Lish, J. D., Dime-Meenan, S., Whybrow, P. C., Price, R. A., & Hirschfeld, R. M. (1994). The national depressive and manic-depressive association (DMDA) survey of bipolar members. Journal of Affective Disorders, 31(4), 281294. doi: 10.1016/0165-0327(94)90104-x.CrossRefGoogle ScholarPubMed
Martinez-Aran, A., & Vieta, E. (2015). Cognition as a target in schizophrenia, bipolar disorder and depression. European Neuropsychopharmacology, 25(2), 151157. doi: 10.1016/j.euroneuro.2015.01.007.CrossRefGoogle ScholarPubMed
McIntosh, A. M., Moorhead, T. W., McKirdy, J., Hall, J., Sussmann, J. E., Stanfield, A. C., … Lawrie, S. M. (2009). Prefrontal gyral folding and its cognitive correlates in bipolar disorder and schizophrenia. Acta Psychiatrica Scandinavica, 119(3), 192198. doi: 10.1111/j.1600-0447.2008.01286.x.CrossRefGoogle ScholarPubMed
Merikangas, K. R., Jin, R., He, J. P., Kessler, R. C., Lee, S., Sampson, N. A., … Zarkov, Z. (2011). Prevalence and correlates of bipolar spectrum disorder in the world mental health survey initiative. Archives of General Psychiatry, 68(3), 241251. doi: 10.1001/archgenpsychiatry.2011.12.CrossRefGoogle ScholarPubMed
Moore, G. J., Bebchuk, J. M., Wilds, I. B., Chen, G., & Manji, H. K. (2000). Lithium-induced increase in human brain grey matter. Lancet (London, England), 356(9237), 12411242. doi: 10.1016/s0140-6736(00)02793-8.CrossRefGoogle ScholarPubMed
Morselli, P. L., Elgie, R., & Europe, G. (2003). GAMIAN-Europe/BEAM survey I--global analysis of a patient questionnaire circulated to 3450 members of 12 European advocacy groups operating in the field of mood disorders. Bipolar Disorders, 5(4), 265278. doi: 10.1034/j.1399-5618.2003.00037.x.CrossRefGoogle Scholar
Nanda, P., Tandon, N., Mathew, I. T., Giakoumatos, C. I., Abhishekh, H. A., Clementz, B. A., … Keshavan, M. S. (2014). Local gyrification index in probands with psychotic disorders and their first-degree relatives. Biological Psychiatry, 76(6), 447455. doi: 10.1016/j.biopsych.2013.11.018.CrossRefGoogle ScholarPubMed
Nenadic, I., Maitra, R., Dietzek, M., Langbein, K., Smesny, S., Sauer, H., & Gaser, C. (2015). Prefrontal gyrification in psychotic bipolar I disorder vs. Schizophrenia. Journal of Affective Disorders, 185, 104107. doi: 10.1016/j.jad.2015.06.014.CrossRefGoogle ScholarPubMed
Olson, I. R., Plotzker, A., & Ezzyat, Y. (2007). The enigmatic temporal pole: A review of findings on social and emotional processing. Brain, 130(Pt 7), 17181731. doi: 10.1093/brain/awm052.CrossRefGoogle ScholarPubMed
O'Shea, K. S., & McInnis, M. G. (2016). Neurodevelopmental origins of bipolar disorder: IPSC models. Molecular and Cellular Neuroscience, 73, 6383. doi: 10.1016/j.mcn.2015.11.006.CrossRefGoogle ScholarPubMed
Padmanabhan, J. L., Tandon, N., Haller, C. S., Mathew, I. T., Eack, S. M., Clementz, B. A., … Keshavan, M. S. (2015). Correlations between brain structure and symptom dimensions of psychosis in schizophrenia, schizoaffective, and psychotic bipolar I disorders. Schizophrenia Bulletin, 41(1), 154162. doi: 10.1093/schbul/sbu075.CrossRefGoogle ScholarPubMed
Palaniyappan, L., & Liddle, P. F. (2012). Aberrant cortical gyrification in schizophrenia: A surface-based morphometry study. Journal of Psychiatry and Neuroscience, 37(6), 399406. doi: 10.1503/jpn.110119.CrossRefGoogle ScholarPubMed
Paris, J., & Black, D. W. (2015). Borderline Personality Disorder and Bipolar Disorder. The Journal of Nervous and Mental Disease, 203(1), 37. http://dx.doi.org/10.1097/NMD.0000000000000225.CrossRefGoogle ScholarPubMed
Pedersen, C. B., Mors, O., Bertelsen, A., Waltoft, B. L., Agerbo, E., McGrath, J. J., … Eaton, W. W. (2014). A comprehensive nationwide study of the incidence rate and lifetime risk for treated mental disorders. JAMA Psychiatry, 71(5), 573581. doi: 10.1001/jamapsychiatry.2014.16.CrossRefGoogle ScholarPubMed
Peng, D., Shi, F., Li, G., Fralick, D., Shen, T., Qiu, M., … Fang, Y. (2015). Surface vulnerability of cerebral cortex to major depressive disorder. PLoS One, 10(3), e0120704. doi: 10.1371/journal.pone.0120704.CrossRefGoogle ScholarPubMed
Penttila, J., Cachia, A., Martinot, J. L., Ringuenet, D., Wessa, M., Houenou, J., … Paillere-Martinot, M. L. (2009a). Cortical folding difference between patients with early-onset and patients with intermediate-onset bipolar disorder. Bipolar Disorders, 11(4), 361370. doi: 10.1111/j.1399-5618.2009.00683.x.CrossRefGoogle Scholar
Penttila, J., Paillere-Martinot, M. L., Martinot, J. L., Ringuenet, D., Wessa, M., Houenou, J., … Cachia, A. (2009b). Cortical folding in patients with bipolar disorder or unipolar depression. Journal of Psychiatry and Neuroscience, 34(2), 127135.Google Scholar
Phillips, M. L., Ladouceur, C. D., & Drevets, W. C. (2008). A neural model of voluntary and automatic emotion regulation: Implications for understanding the pathophysiology and neurodevelopment of bipolar disorder. Molecular Psychiatry, 13(9), 829, 833–857. doi: 10.1038/mp.2008.65.CrossRefGoogle ScholarPubMed
Pompili, M., Gonda, X., Serafini, G., Innamorati, M., Sher, L., Amore, M., … Girardi, P. (2013). Epidemiology of suicide in bipolar disorders: A systematic review of the literature. Bipolar Disorders, 15(5), 457490. doi: 10.1111/bdi.12087.CrossRefGoogle ScholarPubMed
Price, C. J. (2000). The anatomy of language: Contributions from functional neuroimaging. Journal of Anatomy, 197 Pt 3, 335359. doi: 10.1046/j.1469-7580.2000.19730335.x.CrossRefGoogle ScholarPubMed
Price, J. L., & Drevets, W. C. (2010). Neurocircuitry of mood disorders. Neuropsychopharmacology, 35(1), 192216. doi: 10.1038/npp.2009.104.CrossRefGoogle ScholarPubMed
Rakic, P. (1988). Specification of cerebral cortical areas. Science (New York, N.Y.), 241(4862), 170176. doi: 10.1126/science.3291116.CrossRefGoogle ScholarPubMed
Ratnanather, J. T., Cebron, S., Ceyhan, E., Postell, E., Pisano, D. V., Poynton, C. B., … Barta, P. E. (2014). Morphometric differences in planum temporale in schizophrenia and bipolar disorder revealed by statistical analysis of labeled cortical depth maps. Frontiers in Psychiatry, 5, 94. doi: 10.3389/fpsyt.2014.00094.CrossRefGoogle Scholar
Rimol, L. M., Hartberg, C. B., Nesvag, R., Fennema-Notestine, C., Hagler, D. J. Jr, Pung, C. J., … Agartz, I. (2010). Cortical thickness and subcortical volumes in schizophrenia and bipolar disorder. Biological Psychiatry, 68(1), 4150. doi: 10.1016/j.biopsych.2010.03.036.CrossRefGoogle ScholarPubMed
Rybakowski, J. K. (2012). Bipolarity and inadequate response to antidepressant drugs: Clinical and psychopharmacological perspective. Journal of Affective Disorders, 136(1–2), e13e19. doi: 10.1016/j.jad.2011.05.005.CrossRefGoogle ScholarPubMed
Sarrazin, S., Cachia, A., Hozer, F., McDonald, C., Emsell, L., Cannon, D. M., … Houenou, J. (2018). Neurodevelopmental subtypes of bipolar disorder are related to cortical folding patterns: An international multicenter study. Bipolar Disorders, 20(8), 721732. doi: 10.1111/bdi.12664.CrossRefGoogle Scholar
Sassi, R. B., Nicoletti, M., Brambilla, P., Mallinger, A. G., Frank, E., Kupfer, D. J., … Soares, J. C. (2002). Increased gray matter volume in lithium-treated bipolar disorder patients. Neuroscience Letters, 329(2), 243245. doi: 10.1016/s0304-3940(02)00615-8.CrossRefGoogle ScholarPubMed
Schaffer, A., Isometsa, E. T., Tondo, L., D, H. M. Turecki, G., Reis, C., … Yatham, L. N. (2015). International society for bipolar disorders task force on suicide: Meta-analyses and meta-regression of correlates of suicide attempts and suicide deaths in bipolar disorder. Bipolar Disorders, 17(1), 116. doi: 10.1111/bdi.12271.CrossRefGoogle ScholarPubMed
Schmitgen, M. M., Depping, M. S., Bach, C., Wolf, N. D., Kubera, K. M., Vasic, N., … Wolf, R. C. (2019). Aberrant cortical neurodevelopment in major depressive disorder. Journal of Affective Disorders, 243, 340347. doi: 10.1016/j.jad.2018.09.021.CrossRefGoogle ScholarPubMed
Selvaraj, S., Arnone, D., Job, D., Stanfield, A., Farrow, T. F., Nugent, A. C., … McIntosh, A. M. (2012). Grey matter differences in bipolar disorder: A meta-analysis of voxel-based morphometry studies. Bipolar Disorders, 14(2), 135145. doi: 10.1111/j.1399-5618.2012.01000.x.CrossRefGoogle ScholarPubMed
Strakowski, S. M., Adler, C. M., Almeida, J., Altshuler, L. L., Blumberg, H. P., Chang, K. D., … Townsend, J. D. (2012). The functional neuroanatomy of bipolar disorder: A consensus model. Bipolar Disorders, 14(4), 313325. doi: 10.1111/j.1399-5618.2012.01022.x.CrossRefGoogle ScholarPubMed
Strakowski, S. M., Delbello, M. P., & Adler, C. M. (2005). The functional neuroanatomy of bipolar disorder: A review of neuroimaging findings. Molecular Psychiatry, 10(1), 105116. doi: 10.1038/sj.mp.4001585.CrossRefGoogle ScholarPubMed
Townsend, J., & Altshuler, L. L. (2012). Emotion processing and regulation in bipolar disorder: A review. Bipolar Disorders, 14(4), 326339. doi: 10.1111/j.1399-5618.2012.01021.x.CrossRefGoogle ScholarPubMed
Townsend, J. D., Torrisi, S. J., Lieberman, M. D., Sugar, C. A., Bookheimer, S. Y., & Altshuler, L. L. (2013). Frontal-amygdala connectivity alterations during emotion downregulation in bipolar I disorder. Biological Psychiatry, 73(2), 127135. doi: 10.1016/j.biopsych.2012.06.030.CrossRefGoogle ScholarPubMed
Van Essen, D. C. (1997). A tension-based theory of morphogenesis and compact wiring in the central nervous system. Nature, 385(6614), 313318. doi: 10.1038/385313a0.CrossRefGoogle ScholarPubMed
White, T., Su, S., Schmidt, M., Kao, C. Y., & Sapiro, G. (2010). The development of gyrification in childhood and adolescence. Brain and Cognition, 72(1), 3645. doi: 10.1016/j.bandc.2009.10.009.CrossRefGoogle ScholarPubMed
Wise, T., Radua, J., Via, E., Cardoner, N., Abe, O., Adams, T. M., … Arnone, D. (2017). Common and distinct patterns of grey-matter volume alteration in major depression and bipolar disorder: Evidence from voxel-based meta-analysis. Molecular Psychiatry, 22(10), 14551463. doi: 10.1038/mp.2016.72.CrossRefGoogle ScholarPubMed
Xiong, G., Dong, D., Cheng, C., Jiang, Y., Sun, X., He, J., … Yao, S. (2019). State-independent and -dependent structural alterations in limbic-cortical regions in patients with current and remitted depression. Journal of Affective Disorders, 258, 110. doi: 10.1016/j.jad.2019.07.065.CrossRefGoogle ScholarPubMed
Yamasaki, H., LaBar, K. S., & McCarthy, G. (2002). Dissociable prefrontal brain systems for attention and emotion. Proceedings of the National Academy of Sciences, 99(17), 1144711451. doi: 10.1073/pnas.182176499.CrossRefGoogle ScholarPubMed
Young, R. C., Biggs, J. T., Ziegler, V. E., & Meyer, D. A. (1978). A rating scale for mania: Reliability, validity and sensitivity. British Journal of Psychiatry, 133, 429435. doi: 10.1192/bjp.133.5.429.CrossRefGoogle ScholarPubMed
Zhang, Y., Yu, C., Zhou, Y., Li, K., Li, C., & Jiang, T. (2009). Decreased gyrification in major depressive disorder. Neuroreport, 20(4), 378380. doi: 10.1097/WNR.0b013e3283249b34.CrossRefGoogle ScholarPubMed
Zilles, K., Palomero-Gallagher, N., & Amunts, K. (2013). Development of cortical folding during evolution and ontogeny. Trends in Neurosciences, 36(5), 275284. doi: 10.1016/j.tins.2013.01.006.CrossRefGoogle ScholarPubMed
Supplementary material: File

Choi et al. supplementary material

Tables S1-S5

Download Choi et al. supplementary material(File)
File 72.9 KB