Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-02T19:09:08.183Z Has data issue: false hasContentIssue false

Biological component of the NIMH Clinical Research Branch Collaborative Program on the psychobiology of depression: II. Methodology and data analysis

Published online by Cambridge University Press:  09 July 2009

Stephen H. Koslow
Affiliation:
Clinical Research Branch, National Institute of Mental Health, Rockville, Maryland, USA.
D. Eugene Redmond
Affiliation:
Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, USA.
David Garver
Affiliation:
Department of Psychiatry, University of Cincinnati Medical Center, Cincinnati, Ohio, USA.
T. Alan Ramsey
Affiliation:
Veterans Administration Hospital, Philadelphia, Pennsylvania, USA.
Jack Croughan
Affiliation:
Department of Psychiatry, Washington University School of Medicine, St Louis, Missouri, USA.
James Kocsis
Affiliation:
Payne Whitney Psychiatric Clinic, New York, New York, USA.
Israel Hanin
Affiliation:
Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
Kenneth Lieberman
Affiliation:
Psychoendocrine Study Unit, The New York Hospital, Cornell Medical Center, New York, New York, USA.
Regina Casper
Affiliation:
Illinois State Psychiatric Institute, Chicago, Illinois, USA.

Synopsis

A preceding paper has reviewed the history, background, and rationale for this collaborative effort exploring the biologic basis of the affective disorders. This paper details the ‘flow’ of a subject through the experimental protocol, the instrumentation used to obtain the clinical and behavioural data, and the biologic methodologies employed in the analysis of the body fluids. Data management and analysis techniques developed for this study are also examined.

Type
Research Report
Copyright
Copyright © Cambridge University Press 1980

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

American Psychiatric Association (1979). Diagnostic and Statistical Manual (third edn). Washington, D.C.Google Scholar
Anton-Tay, F. & Wurtman, R. J. (1971). Brain monoamines and endocrine functions. In Frontiers in Neuroendocrinology (ed. Martini, L. and Ganong, W. F.), pp. 4566. Oxford University Press: New York.Google Scholar
Axelrod, J. & Cohn, C. K. (1971). Methyltransferase enzymes in red blood cells. Journal of Pharmacology and Experimental Therapeutics 176, 650.Google Scholar
Axelrod, J. & Tomchick, R. (1958). Enzymatic O-methylation of epinephrine and other catechols. Journal of Biological Chemistry 233 702.Google Scholar
Baldessarini, R. J. (1975). The basis for amine hypothesis in affective disorders. Archives of General Psychiatry 32, 10871093.Google Scholar
Beckmann, H. & Goodwin, F. K. (1975). Antidepressant response to tricyclics and urinary MHPG in unipolar patients: clinical response to imipramine or amitriptyline. Archives of General Psychiatry 32, 1721.CrossRefGoogle ScholarPubMed
Beisel, W. R., Cos, J. J., Horton, R., Ping, Y. C. & Forsham, P. H. (1964). Physiology of urinary cortisol excretion. Journal of Endocrinology and Metabolism 24, 887893.CrossRefGoogle ScholarPubMed
Berson, S. A. & Yalow, R. S. (1978). Radioimmunoassay of ACTH in plasma. Journal of Clinical Investigation 47, 27252751.CrossRefGoogle Scholar
Biggs, J. T., Holland, W. H., Chang, S., Hipps, P. P. & Sherman, W. R. (1976). The electron beam ionization mass fragmentographic analysis of tricyclic antidepressants in human plasma. Journal of Pharmaceutical Sciences 65, 261268.Google Scholar
Bivens, C. H., Lebovitz, H. & Feldman, J. (1973). Inhibition of hypoglycemia-induced growth hormone secretion by serotonin antagonists. New England Journal of Medicine 289, 236239.Google Scholar
Blackard, W. G. & Heidingsfelder, J. (1968). Adrenergic receptor control reclamia of growth hormone secretion. Journal of Clinical Investigation 47, 14071414.Google Scholar
Bockar, J., Rotte, R. & Heninger, G. (1974). Increased human platelet MAO activity during Li2CO3 therapy. Life Sciences 15, 21092118.Google Scholar
Bond, P. A., Jenner, F. A. & Sampson, G. A. (1972). Daily variations of the urine content of 3-methyoxy-4-hydroxyphenylglycol in two manic-depressive patients. Psychological Medicine 2, 81.Google Scholar
Bonsnes, R. W. & Taussky, H. H. (1945). On the colormetric determination of creatinine by the jaffee reaction. Journal of Biological Chemistry 158, 581591.Google Scholar
Boyd, A. E., Lebovitz, H. & Pfeiffer, J. (1970). Stimulation of human growth hormone secretion by L-dopa. New England Journal of Medicine 283, 14251429.CrossRefGoogle ScholarPubMed
Breese, G. R., Prange, A. J., Howard, J. L., Lipton, M. A., McKinney, W. T., Bowman, R. E. & Bushnell, P. (1972). 3-Methoxy-4-hydroxyphenylglycol excretion and behavioral changes in rat and monkey after central sympathectomy with 6-hydroxydopamine. Nature: New Biology 240, 286287.Google Scholar
Briggs, M. & Briggs, M. (1973). Hormonal influences on erythrocyte catechol-O-methyltransferase activity in humans. Experentia 20, 278280.CrossRefGoogle Scholar
Brown, J. B. (1977). Platelet MAO and alcoholism. American Journal of Psychiatry 134, 206207.Google Scholar
Brunswick, D. J. & Mendels, J. (1977). Reduced levels of tricyclic antidepressants in plasma from vacutainers. Communications and Psychopharmacology 1, 131134.Google Scholar
Bunney, W. E. Jr & Davis, J. M. (1965). Norepinephrine in depressive reactions: review. Archives of General Psychiatry 13, 483.Google Scholar
Burdock, E. I., Hakerem, G., Hardesty, A. S. & Zubin, J. (1960). A ward behavior rating scale for use with mental hospital patients. Journal of Clinical Psychology 16, 246247.Google Scholar
Burrows, G. D., Davies, B., Norman, T., Maguire, K. & Scoggins, B. A. (1978). Should plasma level monitoring of tricyclic antidepressants be introduced in clinical practice? Communications and Psychopharmacology 2, 393408.Google ScholarPubMed
Cade, J. F. J. (1964). A significant elevation of plasma Mg levels in schizophrenic and depressive states. Medical Journal of Australia i, 195196.CrossRefGoogle Scholar
Caldwell, P. C., Hodgkin, A. L., Keynes, D. & Shaw, T. I. (1960). The effects of injecting ‘energy-rich’ phosphate compounds on the active transport of ions in the giant axons of loligo. Journal of Physiology (London) 152, 561590.Google Scholar
Carlsson, A., Carrodi, H., Fuxe, K. & Hokfelt, T. (1969). Effects of antidepressant drugs on the depletion of intraneuronal brain 5-hydroxytryptamine stores caused by 4-methyl-a-ethyl-m-tyramine. European Journal of Pharmacology 5, 357.Google Scholar
Carpenter, W. T., Murphy, D. L. & Wyatt, R. J. (1975). Platelet MAO activity in acute schizophrenia. American Journal of Psychiatry 132, 438441.Google Scholar
Carroll, B. J. (1972 a). Poor response to antidepressants and dexamethasone nonsuppression. In Depressive Illness: Some Research Studies (ed. Davies, B., Carroll, B. J. and Mowbray, R. M.), pp. 149201. C. C. Thomas: Springfield, Illinois.Google Scholar
Carroll, B. J. (1972 b). The hypothalamic–pituitary–adrenal axis in depression. In Depressive Illness: Some Research Studies (ed. Davies, B., Carroll, B. J. and Mowbray, R. M.), p. 23. C. C. Thomas: Springfield, Illinois.Google Scholar
Carroll, B. J. & Mendels, J. (1976). Neuroendocrine regulation in affective disorders. In Hormones, Behavior and Psychopathology (ed. Sachar, E. J.), pp. 193224. Raven Press: New York.Google Scholar
Casper, R. C., Davis, J. M., Pandey, G. N., Garver, D. L. & Dekirmenjian, H. (1977). Neuroendocrine and aminestudies in affective illness. Psychoneuroendocrinology 2, 105113.Google Scholar
Ching, J., Katz, M. M. & Sanborn, K. O. (1975). C–K–S Video Interview Rating Scale. Unpublished manuscript.Google Scholar
Cochran, E., Carl, J., Hanin, I., Koslow, S. & Robins, E. (1978). Effect of vacutainer stoppers on plasma tricyclic levels: A reevaluation. Communications and Psychopharmacology 2, 493503.Google Scholar
Cohn, C. K., Dunner, D. L. & Axelrod, J. (1970). Reduced catechol-O-methyl-transferase activity in red blood cells of women with primary affective disorder. Science 170, 1323.Google Scholar
Coppen, A., Montgomery, S., Ghose, K., Rama Rao, V. A., Bailey, J., Christiansen, S. J., Mikkleson, P. L., van Praag, H. M., van de Poel, F., Minsker, E. J., Kozulja, V. J., Matussek, N., Kungkunz, G. & Jorgensen, A. (1978). Amitriptyline plasma-concentration and clinical effect. Lancet i, 6366.Google Scholar
Cotham, R. H. & Shand, D. (1975). Spuriously low plasma propranolol concentrations resulting from blood collection methods. Clinical Pharmacology and Therapeutics 18, 535538.Google Scholar
Davis, J. M., Janowsky, D. S. & Elyousef, K. (1973). Pharmacology – the biology of lithium. In Lithium – Its Role in Psychiatric Research and Treatment (ed. Gershon, S. and Shopsin, B.), pp. 167188. Plenum Press: New York.Google Scholar
Dekirmenjian, H. & Maas, J. W. (1970). An improved procedure of 3-methyoxy-4-hydrophenylethylene glycol determination by gas–liquid chromatography. Analytical Biochemistry 35, 113122.Google Scholar
Derogatis, L. R., Lipman, R. S., Rickels, K., Uhlenhuth, E. H. & Covi, L. (1974). The Hopkins Symptom Checklist (HSCL): a measure of primary symptom dimensions. In Psychological Measurements in Psychopharmacology: Modern Problems in Pharmacopsychiatry Vol. 7 (ed. Pichot, P.), pp. 79110. S. Karger: Basel.Google Scholar
Donald, R. A. (1968). Application of the coated charcoal separation method to the RIA of plasma corticotrophin. Journal of Endocrinology 41, 499508.CrossRefGoogle Scholar
Dunner, D. L., Cohn, C. K., Gershon, S. & Goodwin, F. K. (1971). Differential catechol-O-methyltransferase activity in unipolar and bipolar affective illness. Archives of General Psychiatry 25, 348.Google Scholar
Durell, J. (1974). Factors in depression. Sodium and potassium metabolism. In Lithium Salts and Affective Disorders. Raven Press: New York.Google Scholar
Endicott, J. & Spitzer, R. L. (1978). The schedule for affective disorders and schizophrenia. Archives of General Psychiatry 35, 837844.Google Scholar
Feighner, J. P., Robins, E., Guze, S. B., Woodruff, R. A. Jr, Winokur, G. & Munoz, R. (1972). Diagnostic criteria for use in psychiatric research. Archives of General Psychiatry 26, 5763.CrossRefGoogle ScholarPubMed
Frazer, A., Secunda, S. & Mendels, J. (1972). A method for the determination of sodium, potassium, magnesium, and lithium concentration in erythrocytes. Clinica chimica acta 36, 499509.Google Scholar
Frazer, A., Mendels, J. & Brunswick, D. (1977 a). Transfer of lithium ions across the erythrocyte membrane. Communications and Psychopharmacology 1, 255270.Google ScholarPubMed
Frazer, A., Mendels, J., Brunswick, D. & Ramsey, T. A. (1977 b). Transfer of sodium ions across the erythrocyte membrane in manic-depressive illness: treatment with lithium carbonate. Life Sciences 22 (2), 157164.Google Scholar
Fremstad, D. & Bergerud, K. (1976). Plasma protein binding of drugs as influenced by blood collection methods. Acta pharmacologica et toxicologica 39, 570572.Google Scholar
Fri, C. G., Wiesel, F. A. & Sedval, G. (1974). Simultaneous quantification of homovanillic acid and 5-hydroxyindole- acetic acid in cerebrospinal fluid by mass fragmentography. Life Sciences 14, 24692480.Google Scholar
Friedman, E., Shopsin, B., Sathananthan, G. & Pershon, S. (1974). Blood platelet MAO activity in psychiatric patients. American Journal of Psychiatry 131, 13921394.CrossRefGoogle ScholarPubMed
Frizel, D., Coppen, A. J. & Marks, V. (1969). Plasma magnesium and calcium in depression. British Journal of Psychiatry 115, 13751377.Google Scholar
Furlong, F. W., Sellers, E. M. & Kapur, B. M. (1977). Amitryptyline blood levels and relapse. Canadian Psychiatric Association Journal 22, 275284.Google Scholar
Garrahan, P. J. & Glynn, I. M., (1967). The stoichiometry of the sodium pump. Journal of Physiology (London) 192, 217235.Google Scholar
Garver, D. L., Pandey, G. N., Dekirmenjian, H. & Deleon-Jones, F. (1975). Growth hormone and catecholamines in affective disease. American Journal of Psychiatry 132, 11491154.Google Scholar
Gibbons, J. L. (1960). Total body sodium and potassium in depressive illness. Clinical Science 19, 133.Google Scholar
Glowinski, J., Kolpin, I. J. & Axelrod, J. (1965). Metabolism of [3H]-norepinephrine in rat brain. Journal of Neurochemistry 12, 2530.Google Scholar
Goodwin, F. K. & Post, R. M. (1975). Studies of amine metabolites in affective illness in schizophrenia: a comparative analysis. In Biology of Major Psychosis: A Comparative Analysis (ed. Freedman, D. X.), pp. 299332. Raven Press: New York.Google Scholar
Gram, L. F. (1977). Plasma level monitoring of tricyclic antidepressant therapy. Clinical Pharmacokinetics 2, 237251.Google Scholar
Greenspan, K., Schildkraut, J. J., Gordon, E. K., Baer, L., Aranoff, M. S. & Durell, J. (1970). Catecholamine metabolism in affective disorders. III. MHPG and other catecholamine metabolites in patients treated with lithium carbonate. Journal of Psychiatric Research 7, 171.Google Scholar
Gruen, P. H., Sachar, E. J., Altman, N. & Sassin, J. (1975). Growth hormone responses to hypoglycemia in post-menopausal, depressed women. Archives of General Psychiatry 32, 3133.Google Scholar
Gustavson, K. H., Wetterberg, L., Backstrom, M. & Ross, S. F. (1973). COMT activity in erythrocytes in Down's syndrome. Clinical Genetics 4, 279280.CrossRefGoogle Scholar
Hamilton, M. (1960). A rating scale for depression. Journal of Neurology, Neurosurgery and Psychiatry 23, 5662.Google Scholar
Hamilton, M. (1967). Development of a rating scale for primary depressive illness. British Journal of Social and Clinical Psychology 6, 278296.Google Scholar
Himsworth, R. (1970). Hypothalamic control of adrenalin secretion in response to insufficient glucose. Journal of Physiology 206, 411417.Google Scholar
Hoggerty, G. (1974). Personal history for depressive disorders (PHDD). Unpublished manuscript.Google Scholar
Hokin-Neaverson, M., Burckhardt, W. A. & Jefferson, J. (1976). Increased erythrocyte NA+ pump and NaKATPase activity during lithium therapy. Research Communications in Chemical Pathology and Pharmacology 14, 117126.Google Scholar
Imura, H., Lal, S., de la Vega, C. E., Sourkes, T. L. & Friesen, H. G. (1973). Effect of apomorphine on growth hormone prolactin, luteinizing hormone and follicle-stimulating hormone, levels in human serum. Journal of Clinical Endocrinology and Metabolism 37, 719724.Google Scholar
Jones, F. D., Maas, J. W., Dekirmenjian, H. & Fawcett, J. A. (1973). Urinary catecholamine metabolites during behavioral changes in a patient with manic-depressive cycles. Science 179, 300.Google Scholar
Katz, M. M. & Itil, T. M. (1974). Video methodology for research in psychopathology and psychopharmacology. Archives of General Psychiatry 31, 204210.Google Scholar
Katz, M. M., Secunda, S. K., Hirschfeld, R. M. A. & Koslow, S. H. (1979). NIMH Clinical Research Branch Collaborative Program on the psychobiology of depression. Archives of General Psychiatry 36, 765771.Google Scholar
King, H. E. (1972). Tests of motility relevant to the affective disorders. Special Report for the Clinical Research Branch of NIMH. Unpublished manuscript.Google Scholar
Lal, S., Tolis, G., Martin, J. B., Brown, G. M. & Guyda, H. (1975). Effect of clonidine on growth hormone, prolactin, luteinizing hormone, follicle-stimulating hormone, and thyroid-stimulating hormone in the serum of normal men. Journal of Clinical Endocrinology and Metabolism 41, 827831.CrossRefGoogle ScholarPubMed
Liotta, A. & Krieger, D. T. (1975). A sensitive bioassay for the determination of human plasma ACT levels. Journal of Clinical Endocrinology and Metabolism 40, 268277.Google Scholar
Maas, J. W. (1975). Biogenic amines and depression. Archives of General Psychiatry 32, 13571361.Google Scholar
Maas, J. W. (1977). The effects of psychopharmacological agents on central nervous system amine metabolism in man. Annual Review of Pharmacology 17, 411424.Google Scholar
Maas, J. W. & Landis, D. H. (1965). Brain norepinephrine and behavior: a behavioral study and kinetic study. Psychosomatic Medicine 27, 399407.CrossRefGoogle ScholarPubMed
Maas, J. W. & Landis, D. H. (1968). In vivo studies of the metabolism of norepinephrine in the central nervous system. Journal of Pharmacology and Experimental Therapeutics 163, 147162.Google Scholar
Maas, J. W. & Landis, D. H. (1971). The metabolism of circulating norephinephrine by human subjects. Journal of Pharmacology and Experimental Therapeutics 177, 600612.Google Scholar
Maas, J. W., Fawcett, J. A. & Dekirmenjian, H. (1968a). 3-Methoxy-4-hydroxy-phenylglycol (HMPG) excretion in depressive states. pilot study. Archives of General Psychiatry 19, 129.Google Scholar
Maas, J. W., Fawcett, J. A. & Dekirmenjian, H. (1968 b). 3-Methoxy-4-hydroxy-phenylglycol (MHPG) excretion in depressed states. Archives of General Psychiatry 19, 129134.CrossRefGoogle Scholar
Maas, J. W., Fawcett, J. A. & Dekirmenjian, H. (1972). Catecholamine metabolism, depressive illness and drug response. Archives of General Psychiatry 26, 252.Google Scholar
Maas, J. W., Dekirmenjian, H., Garver, D., Redmond, D. E. & Landis, D. H. (1973 a). Excretion of catecholamine metabolites following intraventricular injection of 6-hydroxy-dopamine in the Macaca Speciosa. European Journal of Pharmacology 23, 121130.Google Scholar
Maas, J. W., Dekirmenjian, H. & Jones, F. (1973 b) The identification of depressed patients who have a disorder of NE metabolites and/or disposition. In Frontiers in Catecholamine Research (ed. Usdin, E. and Snyder, S. H.), pp. 10911096. Pergamon Press: New York.Google Scholar
Maas, J. W., Koslow, S., Davis, J., Katz, M., Mendels, J., Robins, E., Stokes, P. & Bowden, C. (1980). Biological component of the NIMH Clinical Research Branch Collaborative Program on the psychobiology of depression. I. Background and theoretical considerations. Psychological Medicine 10, 759776.Google Scholar
Martin, J. B. (1973). Neural regulation of growth hormone secretion. New England Journal of Medicine 288, 13841393.CrossRefGoogle ScholarPubMed
Matthysse, S. & Baldessarini, R. J. (1972). S-adenosylmethionine and catechol-O-methyl-transferase in schizophrenia. American Journal of Psychiatry 128, 13101312.Google Scholar
Meltzer, H. Y. & Stahl, S. M. (1974). Platelet MAO activity and substrate preferences in schizophrenic patients. Research Communications in Chemical Pathology and Pharmacology 7, 419431.Google Scholar
Mendels, J. & Frazer, A. (1974). Alterations in cell membrane activity in depression. American Journal of Psychiatry 131, 12401246.Google Scholar
Muller, E. E., Sawane, S., Arimura, A. & Schally, A. V. (1967). Blockade of release of growth hormone by brain norepinephrine depletors. Endocrinology 80, 471476.CrossRefGoogle ScholarPubMed
Muller, P. S., Heninger, G. R. & McDonald, R. K. (1969). Insulin tolerance test in depression. Archives of General Psychiatry 21, 587594.Google Scholar
Murphy, B. E. P. (1967). Some studies of the protein binding of steroids and their application to the routine micro and ultramicro measurement of various steroids in the body fluids by competitive protein-binding radioassay. Journal of Clinical Endocrinology and Metabolism 27, 973990.Google Scholar
Murphy, D. L. & Redmond, D. E. Jr (1965). The catecholamines: possible role in affect, mood, and emotional behavior in man and animals. In Catecholamines and Behavior Vol. 2 (ed. Friedhoff, J. A.), pp. 17117. Plenum Press: New York.Google Scholar
Murphy, D. L. & Weiss, R. (1972). Reduced MAO activity in blood platelets from bipolar depressed patients. American Journal of Psychiatry 128, 13511357.Google Scholar
Murphy, D. L. & Wyatt, R. J. (1972). Reduced MAO activity in blood platelets from schizophrenic patients. Nature 238, 225226.Google Scholar
Murphy, D. L., Campbell, I. & Costa, J. L. (1978). Current status of the indoleamine hypothesis of the affective disorders. In Psychopharmacology: A Generation of Progress (ed. Lipton, M. A., Dimascio, A. and Killam, K. F.), pp. 12351247. Raven Press: New York.Google Scholar
Murphy, D. L., Pickar, D. & Alterman, I. S. (1980). Methods for the quantitative assessment of depressive and manic behavior. In Quantitative Techniques for the Evaluation of the Behavior of Psychiatric Patients (ed. Burdock, E. I., Sudilovsky, A. and Gershon, S.). Marcel-Dekker: New York (in the press).Google Scholar
Nies, A., Robinson, D. S., Amborn, K. R. & Lampert, R. P. (1973). Genetic control of platelet and plasma MAO activity. Archives of General Psychiatry 28, 834838.Google Scholar
Pandey, G. N., Dorus, E. B., Dekirmenjian, H. & Davis, J. M. (1975). Effect of Li treatment on blood COMT and platelet MAO in normal human subjects. Federation Proceedings; Federation of American Societies for Experimental Biology 34, 778.Google Scholar
Piemonte, G., Luisetto, G. & Conte, N. (1973). A simplified method to determine ultra-filterable plasma magnesium. Normal values and preliminary results in hyper and hypothyroidism. Clinica chimica acta 45, 261267.Google Scholar
Post, R. L., Albright, C. D. & Dayain, K. (1967). Resolution of pump and leak components of Na+ and K+ ion transport in human erythrocytes. Journal of General Physiology 50, 12011220.Google Scholar
Raskin, A., Schulterbrandt, J. G., Reatig, N. & McKeon, J. J. (1969). Replication of factors of psychopathology in interview, ward behavior, and self-ratings of hospitalized depressives. Journal of Nervous and Mental Disease 148, 8798.Google Scholar
Rybakowski, J., Chtopocka, M., Kapelski, Z., Hernacka, B., Szaynerman, Z. & Kasprzak, K. (1974). Red blood cell lithium index in patients with affective disorders in the course of lithium prophylaxis. International Pharmacopsychiatry 9, 166171.Google Scholar
Sachar, E., Finkelstein, J. & Hellman, J. (1971). Growth hormone responses in depressive illness. I. Response to insulin tolerance test. Archives of General Psychiatry 25, 263269.Google Scholar
Sachar, E., Mushrush, G., Perlow, M., Weitzman, E. & Sassin, J. (1972). Growth hormone response in L-dopa in depressed patients. Science 178, 13041305.Google Scholar
Sachar, E., Frantz, A. G., Altman, N. & Sassin, J. (1973). Growth hormone and prolactin in unipolar and bipolar depressed patients: responses to hypoglycemia and L-dopa. American Journal of Psychiatry 130, 13621367.Google Scholar
Schildkraut, J. J. (1965). The catecholamine hypothesis of affective disorders: a review of supporting evidence. American Journal of Psychiatry 122, 509.Google Scholar
Schildkraut, J. J. (1973). Norepinephrine metabolites as biochemical criteria for classifying depressive disorders and predicting responses to treatment: preliminary findings. American Journal of Psychiatry 130, 695699.Google Scholar
Schildkraut, J. J. (1978). Current status of the catecholamine hypothesis of affective disorders. In Psychopharmacology: A Generation of Progress (ed. Lipton, M. A., DiMascio, A. and Killam, K. F.), pp. 12231234. Raven Press: New York.Google Scholar
Schildkraut, J. J. & Kety, S. S. (1967). Biogenic amines and emotion. Science 156, 21.Google Scholar
Schildkraut, J. J., Draskoczy, P. R., Gershon, E. S., Reich, P. & Grab, E. L. (1971). Effects of tricyclic antidepressants on norepinephrine metabolism: basis and clinical studies.In Brain Chemistry and Mental Disease (ed Ho, B. T. and McLsaac, W.), pp. 215236. Plenum Press: New York.Google Scholar
Shaskan, E. G. & Becker, R. E. (1975). Platelet MAO in schizophrenics. Nature 259, 659660.Google Scholar
Simhchari, N., Leiner, K. & Brown, C. (1975). The simultaneous determination by selected ion monitoring of the levels of homovanillie, isohomovanillie, 3, 4-dihydroxy-phenylacetic acid and 3-methoxy-4-hydroxymandelic acid in simple biological samples. Clinica chimica acta 62, 245253.Google Scholar
Skou, J. C. (1960). Further investigations on a Mg+ Na+ activated ATPase, possibly related to the active, linked transport of Na+ and K+ across the nerve membrane. Biochemica et biophysica acta 42, 6.Google Scholar
Spitzer, R. L. & Endicott, J. (1978). Schedule of Affective Disorders and Schizophrenia–Change Version (third edn). Biometrics Research, New York State Psychiatric Institute: New York.Google Scholar
Spitzer, R. L., Endicott, J. & Robins, E. (1975). Clinical criteria for psychiatric diagnosis and DSM-III. American Journal of Psychiatry 132, 11871192.Google Scholar
Spitzer, R. L., Endicott, J. & Robins, E. (1978 a). Research Diagnostic Criteria (RDC) For a Selected Group of Functional Disorders (third edn). Biometrics Research, New York State Psychiatric institute: New York. Developed by Spitzer, J., Endicott, E. Robins with the assistance of the other participants in the NIMH Clinical Research Branch Collaborative Program on the Psychobiology of Depression.Google Scholar
Spitzer, R. L., Endicott, J. & Robins, E. (1978 b). Research diagnostic criteria: rationale and reliability. Archives of General Psychiatry 35, 773782.Google Scholar
Stokes, P. E. (1972). Studies on the control of adrenocortical function in depression. In Recent Advances in the Psychobiology of the Depressive Illnesses (ed. Williams, T., Katz, M. and Shield, J. A. Jr), pp. 199200. DHEW Publication 70–9053. US Government Printing Office: Washington, D.C.Google Scholar
Stokes, P. E., Stoll, P. M., Mattson, M. D. & Sollod, R. N. (1976). Diagnosis and psychopathology in psychiatric patients resistant to dexamethasone. In Hormones, Behavior and Psychopathology (ed. Sachar, E. J.), pp. 225232. Raven Press: New York.Google Scholar
Swahn, O. G., Sandgarde, B., Wiesel, F. A. & Sedvall, G. (1976). Simultaneous determination of the three major monoamine metabolites in brain tissue and body fluids by a mass fragmentographic method. Psychopharmacology 48, 147152.Google Scholar
Taniguchi, K., Kaimoto, Y. & Armstrong, M. D. (1964). Quantitative determination of metaephrine and normetanephrine in urine. Journal of Laboratory and Clinical Medicine 64, 469484.Google Scholar
Weinshilboum, R. M., Raymond, F. A., Elveback, L. R. & Weidman, W. H. (1974). Correlation of erythrocyte catechol-O-methyltransferase activity between siblings. Nature 252, 490491.Google Scholar
Wilkinson, G. R. & Schenker, S. (1976). Letter to the editor. Clinical Pharmacology and Therapeutics 19, 486488.Google Scholar
Zeller, E. A. (1975). Molecular abenation in platelet MAO in schizophrenia. Lancet i, 1385.Google Scholar