Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-26T17:08:20.119Z Has data issue: false hasContentIssue false

On the Present State of the Philosophy of Quantum Mathematics

Published online by Cambridge University Press:  28 February 2022

Howard Stein*
Affiliation:
The University of Chicago

Extract

It was with some trepidation that I agreed to speak today, because of a strong doubt that I could say anything substantial not already to be found in the literature of the subject. I cannot say that this trepidation has been subsequently relieved: all I can claim to offer in this paper is a review of certain basic characteristics or themes in the quantum-mechanical situation (which by now should, I think, be thoroughly understood by everyone engaged with the matter), supplemented by some rather general reflections on our philosophical predicament. In aid of these more general reflections, I shall indulge a proclivity for calling on historical matters—some fairly recent, some older, some ancient—which I hope may serve to place current issues in a useful perspective; and I ask your forgiveness for allowing myself to quote certain previous, but hitherto unpublished, remarks of my own.

Type
Part XII. Philosophy of Quantum Mechanics Today
Copyright
Copyright © 1983 Philosophy of Science Association

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bell, John S. (1964). “On the Einstein-Podolsky-Rosen Paradox.” Physics 1: 195-200.10.1103/PhysicsPhysiqueFizika.1.195CrossRefGoogle Scholar
Bell, John S. (1966). “On the Problem of Hidden Variables in Quantum Mechanics.” Reviews of Modern Physics 38: 447-452.CrossRefGoogle Scholar
Bell, John S. (1977). “Free Variables and Local Causality.” Epistemologioal Letters 15: 79-84.Google Scholar
Burnet, John. (1930). Early Greek Philosophy. 4th ed. London: Macmillan Company.Google Scholar
Clauser, John F.; Horne, Michael A.; Shimony, Abner; and Holt, Richard A. (1969). “Proposed Experiment to Test Local Hidden-Variable Theories.” Physical Review Letters 23: 880-884.CrossRefGoogle Scholar
Einstein, Albert. (1905). “Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt.” Annalen der Physik (series 4) 17: 132-148.CrossRefGoogle Scholar
Everett, Hugh, III. (1957). “‘Relative State’ Formulation of Quantum Mechanics.” Reviews of Modern Physics 29: 454-465.CrossRefGoogle Scholar
Gleason, Andrew M. (1957). “Measures on the Closed Subspaces of a Hilbert Space.” Journal of Mathematics and Mechanics 6: 855-893.Google Scholar
Heisenberg, Werner. (1958). Physics and Philosophy. New York: Harper & Brothers.Google Scholar
Hellman, Geoffrey. (1982). “Stochastic Einstein-locality and the Bell Theorems.” Synthèse 53: 461-504.CrossRefGoogle Scholar
Jarrett, Jon P. (1983). Bell's Theorem. Quantum Mechanics. and Local Realism. Unpublished Ph.D. Dissertation, University of Chicago.Google Scholar
Kochen, Simon. (1979). “The Interpretation of Quantum Mechanics.” Unpublished typescript; forthcoming in Advances in Mathematics.Google Scholar
Kochen, Simon and Speaker, Ernst. (1967). “The Problem of Hidden Variables in Quantum Mechanics.” Journal of Mathematics and Mechanics 17: 59-87.Google Scholar
Lakatos, Imre. (1970). “Falsification and the Methodology of Scientific Research Programs.” In Criticism and the Growth of Knowledge. Edited by Lakatos, Imre and Musgrave, Alan. Cambridge: Cambridge University Press. Pages 91-196.CrossRefGoogle Scholar
Ernst, Mach. (1883). Die Mechanik in ihrer Entwicklung historischkritisch dargestellt. Leipzig: F.A. Brockhaus. (Reprinted as The Science of Mechanics: A Critical and Historical Account of Its Development. (trans.) McCormack, T.J.. La Salle, IL: Open Court, 1960.)Google Scholar
Mackey, George W. (1978). Unitary Group Representations In Physics, Probability, and Number Theory. Reading, Mass.: Benjamin/Cummings Publishing Co.Google Scholar
Maxwell, James Clerk. (1876). “On the Proof of the Equations of Motion of a Connected System.” Proceedings of the Cambridge Philosophical Society 2: 292-294. (As reprinted in Niven, W.D. (ed.). The Scientific Papers of James Clerk Maxwell, Volume II, Cambridge: Cambridge University Press, 1890. Pages 308-309.Google Scholar
Nash, John. (1956). “The Imbedding Problem for Riemannian Manifolds.” Annals of Mathematics 63: 20-63.CrossRefGoogle Scholar
Neugebauer, Otto. (1957). The Exact Sciences in Antiquity. 2nd ed. Providence: Brown University Press. (As reprinted 1969. New York: Dover Publications.Google Scholar
Neugebauer, Otto. (1975). A History of Ancient Mathematical Astronomy. Part One. New York: Springer Verlag.CrossRefGoogle Scholar
von Neumann, John. (1927a). “Mathematische Begrundung der Quantenmechanik.” Göttinger Nachrichten (1927): 1-57. (As reprinted in von Neumann (1961). Pages 151-207.Google Scholar
von Neumann, John. (1927b). “Wahrscheinlichkeitstheoretischer Aufbau der Quantenmechanik.” Göttinger Nachrichten (1927): 215-272. (As reprinted in von Neumann (1961). Pages 208-235.Google Scholar
von Neumann, John. (1932). Mathematische Grundlagen der Quantenmechanik. Berlin: Springer. (Reprinted as Mathematical Foundations of Quantum Mechanics. (trans.) Beyer, R.T.. Princeton: Princeton University Press, 1955.Google Scholar
von Neumann, John. (1961). Collected Works, Volume 1. (ed.) von Taub, A.H.. Oxford- London- New York- and Paris: Pergamon Press.Google Scholar
Newton, Isaac. (1726). Philosophiae Naturalis PrinoiPia Mathematica. 3rd ed. London: Royal Society.Google Scholar
Poincaré, Henri. (1890). Éléotricité et Optique. Volume 1. Paris: Georges Carré.Google Scholar
Poincaré, Henri. (1895). “A Propos de la Théorie de M. Larmor.” L'Éclairage Électrique 3: 5-13, 289-295; 5: 5-14, 385-392. (As reprinted in Poincaré. (1954). Pages 369-426.Google Scholar
Poincaré, Henri. (1900). “La Théorie de Lorentz et le Principe de Ré action.” Archives Néerlandaises des Sciences Exactes et Naturelles (2nd series) 5: 252-278. (As reprinted in Poincaré (1954). Pages 464-488.) .Google Scholar
Poincaré, Henri. (1902). La Science et l'Hypothèse. Paris: Ernest Flammarion. (As reprinted as Science and Hypothesis, (trans.) W.J. Greenstreet. New York: Dover Publications, 1952.)Google Scholar
Poincaré, Henri. (1906). “Sur la Dynamique de l'Électron.” Rendiconti del Circolo Matematico di Palermo 21: 129-176. (As reprinted in Poincaré (1954). Pages 494-550.CrossRefGoogle Scholar
Poincaré, Henri. (1908a). “La Dynamique de l'Électron.” Revue Générale des Sciences Pures et Appliques 19: 386-402. (As reprinted in Poincaré (1954). Pages 551-586. Translated as Part III of Poincaré (1908b). Pages 199-250.Google Scholar
Poincaré, Henri. (1908b). Science et méthode. Paris: E. Flammarion. (As reprinted as Science and Method, (trans.) Francis Maitland. London: T. Nelson and Sons, 1914.Google Scholar
Poincaré, Henri. (1954). Oeuvres de Henri Poincaré. Volume IX. Paris: Gauthier-Villars.Google Scholar
Schrödinger, Erwin. (1944). What is Life? Cambridge: Cambridge University Press.Google Scholar
Shimony, Abner. (1978). “Metaphysical Problems in the Foundations of Quantum Mechanics.” International Philosophical Quarterly 18: 3-17.CrossRefGoogle Scholar
Shimony, Abner. (1980). “The Point We Have Reached.” Epistemolϕgioal Letters 26: 1-7.Google Scholar
Shimony, Abner. (Forthcoming). “Contextual Hidden Variables Theories and Bell's Inequalities.” To be published in The British Journal for the Philosophy of Science.Google Scholar
Stein, Howard. (1970). “Is There a Problem of Interpreting Quantum Mechanics?” Noûs 4: 93-103.CrossRefGoogle Scholar
Stein, Howard. (1972). “On the Conceptual Structure of Quantum Mechanics.” In Paradigms and Paradoxes: the Philosophical Challenge of the Quantum Domain. (University of Pittsburgh Series in the Philosophy of Science. Volume V.) Edited by Colodny, Robert. Pittsburgh: University of Pittsburgh Press. Pages 367-438.Google Scholar
Stein, Howard. (1981). “‘Subtler Forms of Matter’ in the Period Following Maxwell.” In Conceptions of Ether: Studies in the History of Ether Theories, 1740-1900. Edited by Cantor, G.N. and Hodge, M.J.S.. Cambridge: Cambridge University Press. Pages 309-340.Google Scholar
van der Waerden, Bartel L. (ed.). (1967). Sources of Quantum Mechanics. New York: Dover Publications.Google Scholar