Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-26T17:55:53.187Z Has data issue: false hasContentIssue false

The Foundations of Statistical Mechanics

Published online by Cambridge University Press:  28 February 2022

Laszlo Tisza*
Affiliation:
Massachusetts Institute of Technology

Extract

The idea of combining molecular mechanics with statistical principles, in order to provide a “reduction” of thermodynamics to mechanics, took shape about a hundred years ago. Since that time, the technique of explaining macroscopic properties of matter in microscopic terms has advanced by leaps and bounds; but this practical success is not matched by a comparable progress in our understanding of the “foundations”. Recent mathematical advances in the ergodic theory ([18] and the various papers published in [6]) make it only more apparent that such discussions are still pursued in the conceptual framework of Boltzmann. My purpose is to advance another approach that is in some sense complementary to the traditional one. I suggest first a heuristic guideline that is broad enough to subsume both programs.

Type
Part X. Foundations of Statistical Mechanics
Copyright
Copyright © 1977 by the Philosophy of Science Association

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

1

This work is supported in part through funds provided by ERDA under Contract E(11-1)-3069.

References

[1] Boltzmann, L., “Űber die mechanische Bedeutung des zweiten Hauptsatzes der Wärmelehre.” Wiener Berichte 53(1866): 195220.Google Scholar
[2] Boltzmann, L.. “Űber die Unentbehrlichkeit der Atomistic in der Naturwissenschaft.” In Populäre Schriften. Leipzig: J.A. Barth, 1905. Pages 141157.Google Scholar
[3] Brush, S.G., “Foundations of Statistical Mechanics, 1845-1915.” Archive for History of Exact Sciences 4(1967): 145183.CrossRefGoogle Scholar
[4] Callen, H.B.. Thermodynamics. New York: John Wiley & Sons, 1960.Google Scholar
[5] Callen, H.B.. “A Symmetry Interpretation of Thermodynamics.” Foundations of Physics 4(1974): 423443.CrossRefGoogle Scholar
[6] Cohen, E.G.D. and Thirring, W. (eds.). The Boltzmann Equation: Theory and Applications (Acta Physica Austriaca Supplement X ). New York: Springer Verlag, 1973.CrossRefGoogle Scholar
[7] Daub, E.E., “Probability and Thermodynamics: The Reduction of the Second Law.” Isis 60(1969): 318330.CrossRefGoogle Scholar
[8] Ehrenfest, P. Collected Scientific Papers, (ed.) Klein, M.J.. Amsterdam: North-Holland Publishing Company, 1959.Google Scholar
[9] Ehrenfest, P. and T. “Űber zwei bekannte Einwande gegen das Boltzmannsche H-Theorem.” Physikalische Zeitschrift 8(1907): 311314. (As reprinted in [8]. Pages 146-149).Google Scholar
[10] Ehrenfest, P.. The Conceptual Foundations of the Statistical Approach in Mechanics. Ithaca: Cornell University Press 1959. (Translated from Encyklopedia der Mathematischen Wissenschaften) Leipzig IV (1911) 32: 390.)Google Scholar
[11] Einstein, A.Theorie der Opaleszenz von homogenen Flűssigkeiten in der Nähe des kritischen Zustandes.” Annalen der Physik ser. 4, 33(1910): 12751298.CrossRefGoogle Scholar
[12] Friedman, K.S.A Partial Vindication of Ergodic Theory.” Philosophy of Science 43 (1976): 151162.CrossRefGoogle Scholar
[13] Gibbs, J.W. Collected Works Vols. I,II. New Haven: Yale University Press, 1948.Google Scholar
[14] Grad, H.Levels of Description in Statistical Mechanics and Thermodynamics.” In Delaware Seminar in the Foundations of Physics Vol. I. Edited by Bunge, M.. New York: Springer-Verlag, 1967. Pages 4976.CrossRefGoogle Scholar
[15] Jaynes, E.T.Information Theory and Statistical Mechanics.” The Physical Review 106(1957): 620630. 108(1957): 171-190.CrossRefGoogle Scholar
[16] Kac, M. Probability and Related Topics in Physical Sciences. New York: Interscience, 1959.Google Scholar
[17] Klein, M.J. Paul Ehrenfest Vol. I. Amsterdam: North-Holland Publishing Company, 1970.Google Scholar
[18] Lebowitz, J., and Penrose, O.Modern Ergodic Theory.” Physics Today 26(1973): 2329.CrossRefGoogle Scholar
[19] Mach, E.Das Verhältnis physikalischer und chemischer Vorgänge.” In Die Principien der Wärmelehre. Leipzig: J.A. Barth, 1896. Pages 354361.Google Scholar
[20] Mandelbrot, B. “An Outline of a Purely Phenomenological Theory of Statistical Thermodynamics: Canonical Ensembles.” Inst. Radio Eng. IRE Trans Information Theory IT-2(1956): 190-203.CrossRefGoogle Scholar
[21] Mandelbrot, B.On the Derivation of Statistical Thermodynamics from Purely Phenomenological Principles.” Journal of Mathematical Physics 5(1964): 164171.CrossRefGoogle Scholar
[22] Maxwell, J.C.Review of A Treatise on the Kinetic Theory of Gases by Watson, Henry.” Nature 16(1877): 242246.CrossRefGoogle Scholar
[23] Ostwald, W.Faraday Lecture.” Journal of the Chemical Society 85(1904): 506522. (As reprinted in Knight, D.M. (ed.). Classical Scientific Papers, Chemistry. New York: American Elsevir, 1968. Pages 354-370).Google Scholar
[24] Planck, M.Bermerkungen űber Quantitätsparameter, Intensitätsparameter and stabiles Gleichgewicht.” Physica 2(1935): 10291032.Google Scholar
[25] Quay, P.M. “Distribution Functions in Statistical Thermodynamics.” Ph.D. Thesis, MIT 1958.Google Scholar
[26] Sinai, Ya. G. “Erogdic Theory.” In [6]. Pages 575-608.CrossRefGoogle Scholar
[27] Sklar, L.Statistical Explanation and Ergodic Theory.” Philosophy of Science 40(1973): 194212.CrossRefGoogle Scholar
[28] Szilard, L.Uber die Ausdehnung der phänomenologischen Thermodynamik auf die Schwankungserscheinungen.” Zeitschrift für Physik 32(1925): 753788. (As reprinted with translation in B.T. Feld and G.Weiss Szilard (ed's.). The Collected Works of Leo Szilard, Scientific Papers. Cambridge: MIT Press, 1972 Pages 34-102).CrossRefGoogle Scholar
[29] Tisza, L.The Thermodynamics of Phase Equilibrium.” Annals of Physics New York 13(1961): 192. (As reprinted in [34]. Pages 102-193).CrossRefGoogle Scholar
[30] Tisza, L.. “The Logical Structure of Physics.” Synthese 14(1962): 110131. (As reprinted in [34]. Pages 321-342).CrossRefGoogle Scholar
[3l] Tisza, L.. “The Conceptual Structure of Physics.” Review of Modern Physics 35(1963): 151185. (As reprinted in [34]. Pages 343-377).CrossRefGoogle Scholar
[32] Tisza, L. and Quay, P.M.Statistical Thermodynamics of Equilibrium.” Annals of Physics New York 25(1963): 4890. (As reprinted in [34]. Pages 245-287).CrossRefGoogle Scholar
[33] Tisza, L.. “An Outline of MTE.” In [34]. Pages 53-101.Google Scholar
[34] Tisza, L.. Generalized Thermodynamics. Cambridge: MIT Press, 1966.Google Scholar
[35] Tisza, L.. “Classical Statistical Mechanics Versus Quantal Statistical Thermodynamics: A Study in Contrasts.” In Foundations of Probability Theory, Statistical Inference and Theories of Science Vol. III. Edited by Harper, W.L. and Hooker, C.A.. Boston: D. Reidel. Pages 207217.Google Scholar
[36] von Neumann, J. Mathematical Foundations of Quantum Mechanics. (trans.) Beyer, R.J.. Princeton: Princeton University Press, 1955. (Translated from the 1932 German edition.)Google Scholar
[37] Weinhold, F.Metric Geometry of Equilibrium Thermodynamics.” “Journal of Chemical Physics 63(1975): 24792501.CrossRefGoogle Scholar
[38] Weinhold, F.. “Thermodynamics and Geometry.” Physics Today 29(1976): 2330.CrossRefGoogle Scholar
[39] Weisskopf, V.F. Knowledge and Wonder. Garden City, NY.: Doubleday and Company, 1962.Google Scholar
[40] Weisskopf, V.F.. Physics in the Twentieth Century. Cambridge: M.I. Press, 1972.Google Scholar
[4l] Weyl, H. The Theory of Groups and Quantum Mechanics. New York: Dover Publications, 1950. (Translated from Gruppentheorie und Quantenmechanik. Leipzig, 1928).Google Scholar
[42] Wheeler, L.P. Josiah Willard Gibbs. New Haven: Yale University Press, 1951.Google Scholar
[43] White, H.E.Pictorial Representations of the Electron Cloud for Hydrogen-like Atoms.” The Physical Review 37(1931): 14161424.CrossRefGoogle Scholar
[44] Wilson, A.H. Thermodynamics and Statistical Mechanics. Cambridge: Cambridge University Press, 1957.Google Scholar