Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-25T18:22:23.458Z Has data issue: false hasContentIssue false

Quantum Logic

Published online by Cambridge University Press:  28 February 2022

Peter Mittelstaedt*
Affiliation:
Institut für Theoretische Physik, Universität zu Köln

Extract

It has been shown by Birkhoff and v. Neumann (1936) and by Jauch and Piron (1963,1964,1968) that the subspaces of Hilbert space constitute an orthocomplemented quasi-modular lattice Lq, if one considers between two subspaces (elements) a, b the relation a⊆b and the operations a∩b, a∪b, a. Furthermore, since the subspaces can be interpreted as quantum mechanical propositions, and since the operations ∩,∪ ,⊥ have some similarity with the logical operations ⋀ (and), ⋁ (or) and ⌝ (not), the question has been raised already by Birkhoff and v. Neumann, whether the lattice of subspaces of Hilbert space can be interpreted as a propositional calculus, sometimes called quantum logic.

There are many kinds of lattices which can be interpreted as a propositional or logical calculus. A Boolean lattice LB of propositions corresponds to the calculus of classical logic and an implicative (Birkhoff, 1961) lattice Li has as a model the calculus of effective (intuitionistic) logic.

Type
Symposium: Quantum Logic
Copyright
Copyright © 1976 by D. Reidel Publishing Company, Dordrecht-Holland

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Birkhoff, G.: 1961, ‘Lattice Theory’, Ann. Math. Soc. Coll. Publ. XXV, Rev. Ed., p. 147, 195.Google Scholar
Birkhoff, G. and Neumann, J. v.: 1936, Ann. of Math. 37, 823.CrossRefGoogle Scholar
Gleason, A. M.: 1957, J.of Math. andMech. 6, 885.Google Scholar
Jauch, J. M.: 1968, Foundations of Quantum Mechanics, Addison-Wesley Publishing Co., Reading, Mass.Google Scholar
Jauch, J. M. and Piron, C. : 1963, Helv. Phys. Ada 36, 827.Google Scholar
Kamber, F.: 1965, Math. Ann. 158, 158.CrossRefGoogle Scholar
Kamlah, W. and Lorenzen, P.: 1967, Logische Propadeutik, Bibliographisches Institut, Mannheim.Google Scholar
Kochen, S. and Specker, E. P.: 1967, J. of Math, and Mech. 17, 59.Google Scholar
Lorenz, K.: 1968, Arch.f. Math. Logik und Grundlagenforschung.Google Scholar
Lorenzen, P.: 1962, Metamathematik, Bibliographisches Institut, Mannheim.Google Scholar
Mittelstaedt, P.: 1972, Z. Naturforsch. 27a, 1358.Google Scholar
Mittelstaedt, P.: 1972a, Philosophische Probleme der modernen Physik, Bibliographisches Institut, Mannheim, English ed.: Philosophical Problems of Modern Physics, D. Reidel Publishing Company, Dordrecht, Holland, 1976.Google Scholar
Mittelstaedt, P. and Stachow, E. W.: 1974, Found, of Physics 4, 335.CrossRefGoogle Scholar
Piron, C : 1964, Helv. Phys. Ada 37, 439.Google Scholar
Stachow, E. W.: 1973, Diplomarbeit, The University of Cologne.Google Scholar
Stachow, E. W.: 1975, Dissertation, The University of Cologne (to be published).Google Scholar