Published online by Cambridge University Press: 15 December 2000
The three-dimensional (3D) structure of Corynebacterium glutamicum diaminopimelate d-dehydrogenase in a ternary complex with NADPH and l-2-amino-6-methylene-pimelate has been solved and refined to a resolution of 2.1 Å. l-2-Amino-6-methylene-pimelate was recently synthesized and shown to be a potent competitive inhibitor (5 μM) vs. meso-diaminopimelate of the Bacillus sphaericus dehydrogenase (Sutherland et al., 1999). Diaminopimelate dehydrogenase catalyzes the reversible NADP+-dependent oxidation of the d-amino acid stereocenter of meso-diaminopimelate, and is the only enzyme known to catalyze the oxidative deamination of a d-amino acid. The enzyme is involved in the biosynthesis of meso-diaminopimelate and l-lysine from l-aspartate, a biosynthetic pathway of considerable interest because it is essential for growth of certain bacteria. The dehydrogenase is found in a limited number of species of bacteria, as opposed to the alternative succinylase and acetylase pathways that are widely distributed in bacteria and plants. The structure of the ternary complex reported here provides a structural rationale for the nature and potency of the inhibition exhibited by the unsaturated l-2-amino-6-methylene-pimelate against the dehydrogenase. In particular, we compare the present structure with other structures containing either bound substrate, meso-diaminopimelate, or a conformationally restricted isoxazoline inhibitor. We have identified a significant interaction between the α-l-amino group of the unsaturated inhibitor and the indole ring of Trp144 that may account for the tight binding of this inhibitor.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.