Article contents
Optimization of the catalytic properties of Aspergillus fumigatus phytase based on the three-dimensional structure
Published online by Cambridge University Press: 01 July 2000
Abstract
Previously, we determined the DNA and amino acid sequences as well as biochemical and biophysical properties of a series of fungal phytases. The amino acid sequences displayed 49–68% identity between species, and the catalytic properties differed widely in terms of specific activity, substrate specificity, and pH optima. With the ultimate goal to combine the most favorable properties of all phytases in a single protein, we attempted, in the present investigation, to increase the specific activity of Aspergillus fumigatus phytase. The crystal structure of Aspergillus niger NRRL 3135 phytase known at 2.5 Å resolution served to specify all active site residues. A multiple amino acid sequence alignment was then used to identify nonconserved active site residues that might correlate with a given favorable property of interest. Using this approach, Gln27 of A. fumigatus phytase (amino acid numbering according to A. niger phytase) was identified as likely to be involved in substrate binding and/or release and, possibly, to be responsible for the considerably lower specific activity (26.5 vs. 196 U·[mg protein]−1 at pH 5.0) of A. fumigatus phytase when compared to Aspergillus terreus phytase, which has a Leu at the equivalent position. Site-directed mutagenesis of Gln27 of A. fumigatus phytase to Leu in fact increased the specific activity to 92.1 U·(mg protein)−1, and this and other mutations at position 27 yielded an interesting array of pH activity profiles and substrate specificities. Analysis of computer models of enzyme–substrate complexes suggested that Gln27 of wild-type A. fumigatus phytase forms a hydrogen bond with the 6-phosphate group of myo-inositol hexakisphosphate, which is weakened or lost with the amino acid substitutions tested. If this hydrogen bond were indeed responsible for the differences in specific activity, this would suggest product release as the rate-limiting step of the A. fumigatus wild-type phytase reaction.
- Type
- Research Article
- Information
- Copyright
- 2000 The Protein Society
- 39
- Cited by